Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Penjić, Safet"'
Autor:
Monzillo, Giusy, Penjić, Safet
Let $\Gamma$ denote a finite (strongly) connected regular (di)graph with adjacency matrix $A$. The {\em Hoffman polynomial} $h(t)$ of $\Gamma=\Gamma(A)$ is the unique polynomial of smallest degree satisfying $h(A)=J$, where $J$ denotes the all-ones m
Externí odkaz:
http://arxiv.org/abs/2403.00652
Autor:
Monzillo, Giusy, Penjić, Safet
Let ${\cal M}$ denote the Bose--Mesner algebra of a commutative $d$-class association scheme ${\mathfrak X}$ (not necessarily symmetric), and $\Gamma$ denote a (strongly) connected (directed) graph with adjacency matrix $A$. Under the assumption that
Externí odkaz:
http://arxiv.org/abs/2307.11680
Autor:
Fernandez, Blas, Penjic, Safet
Let $\Gamma$ denote a bipartite graph with vertex set $X$, color partitions $Y$, $Y'$, and assume that every vertex in $Y$ has eccentricity $D\ge 3$. For $z\in X$ and a non-negative integer $i$, let $\Gamma_{i}(z)$ denote the set of vertices in $X$ t
Externí odkaz:
http://arxiv.org/abs/2201.05569
A connected graph $\G$ is called {\em nicely distance--balanced}, whenever there exists a positive integer $\gamma=\gamma(\G)$, such that for any two adjacent vertices $u,v$ of $\G$ there are exactly $\gamma$ vertices of $\G$ which are closer to $u$
Externí odkaz:
http://arxiv.org/abs/2105.10655
Autor:
Fiol, M. A., Penjić, Safet
Let $\Gamma$ denote an undirected, connected, regular graph with vertex set $X$, adjacency matrix $A$, and ${d+1}$ distinct eigenvalues. Let ${\mathcal A}={\mathcal A}(\Gamma)$ denote the subalgebra of Mat$_X({\mathbb C})$ generated by $A$. We refer
Externí odkaz:
http://arxiv.org/abs/2009.05343
Autor:
Fiol, M. A., Penjić, Safet
Given a regular (connected) graph $\Gamma=(X,E)$ with adjacency matrix $A$, $d+1$ distinct eigenvalues, and diameter $D$, we give a characterization of when its distance matrix $A_D$ is a polynomial in $A$, in terms of the adjacency spectrum of $\Gam
Externí odkaz:
http://arxiv.org/abs/1906.01307
Autor:
Neumaier, Arnold, Penjić, Safet
Publikováno v:
In Journal of Combinatorial Theory, Series B May 2022 154:392-439
Autor:
MacLean, Mark S., Penjić, Safet
Publikováno v:
In Discrete Mathematics July 2021 344(7)
Publikováno v:
Zbornik radova Filozofskog fakulteta / Proceedings of Faculty of Philosophy. (XIX):179-184
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=1015362
Autor:
Fernández, Blas1 (AUTHOR), Penjić, Safet1 (AUTHOR) Safet.Penjic@iam.upr.si
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. Mar2023, Vol. 46 Issue 2, p1-34. 34p.