Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Pengcheng Zeng"'
Autor:
Xianjing Cheng, Yong Zhao, Wenbang Yang, Zhijun Hu, Xiaomin Yu, Haoliang Zhao, Pengcheng Zeng
Publikováno v:
IET Image Processing, Vol 16, Iss 6, Pp 1678-1693 (2022)
Abstract It is well known that preserving depth edges is an effective solution for achieving the accurate disparity map in stereo matching, but many state‐of‐the‐art methods do not preserve depth edges well. In order to solve it efficiently, th
Externí odkaz:
https://doaj.org/article/47133cc4629341efb10cd1e941fffc03
Publikováno v:
Tongxin xuebao, Vol 41, Pp 116-129 (2020)
In terms of the difficulties to construct the end-to-end path and improve the utilization of network resources,caused by the time-varying multi-dimensional resources and diverse services over the space-ground integrated networks,the time-varying grap
Externí odkaz:
https://doaj.org/article/c54215190f74437e9e590b70966a2a72
Autor:
Pengcheng Zeng, Zhixiang Lin
Publikováno v:
PLoS Computational Biology, Vol 17, Iss 6, p e1009064 (2021)
Technological advances have enabled us to profile multiple molecular layers at unprecedented single-cell resolution and the available datasets from multiple samples or domains are growing. These datasets, including scRNA-seq data, scATAC-seq data and
Externí odkaz:
https://doaj.org/article/363c365446364b4bafd8cade93b09455
Publikováno v:
PLoS ONE, Vol 12, Iss 11, p e0188684 (2017)
Motion analysis of the hyoid bone via videofluoroscopic study has been used in clinical research, but the classical manual tracking method is generally labor intensive and time consuming. Although some automatic tracking methods have been developed,
Externí odkaz:
https://doaj.org/article/ab9a3c5f3c5545e28e50726691a0a681
Publikováno v:
J Appl Stat
In this paper, we consider the problem of classification of misaligned multivariate functional data. We propose to use a model-based approach for the joint registration and classification of such data. The observed functional inputs are modeled as a
Publikováno v:
2022 IEEE International Conference on Image Processing (ICIP).
Publikováno v:
Bioinformatics (Oxford, England).
Motivation Technological advances have enabled us to profile single-cell multi-omics data from the same cells, providing us with an unprecedented opportunity to understand the cellular phenotype and links to its genotype. The available protocols and
Autor:
Longguang Wang, Yulan Guo, Yingqian Wang, Juncheng Li, Shuhang Gu, Radu Timofte, Liangyu Chen, Xiaojie Chu, Wenqing Yu, Kai Jin, Zeqiang Wei, Sha Guo, Angulia Yang, Xiuzhuang Zhou, Guodong Guo, Bin Dai, Feiyue Peng, Huaxin Xiao, Shen Yan, Yuxiang Liu, Hanxiao Cai, Pu Cao, Yang Nie, Lu Yang, Qing Song, Xiaotao Hu, Jun Xu, Mai Xu, Junpeng Jing, Xin Deng, Qunliang Xing, Minglang Qiao, Zhenyu Guan, Wenlong Guo, Chenxu Peng, Zan Chen, Junyang Chen, Hao Li, Junbin Chen, Weijie Li, Zhijing Yang, Gen Li, Aijin Li, Lei Sun, Dafeng Zhang, Shizhuo Liu, Jiangtao Zhang, Yanyun Qu, Hao-Hsiang Yang, Zhi-Kai Huang, Wei-Ting Chen, Hua-En Chang, Sy-Yen Kuo, Qiaohui Liang, Jianxin Lin, Yijun Wang, Lianying Yin, Rongju Zhang, Wei Zhao, Peng Xiao, Rongjian Xu, Zhilu Zhang, Wangmeng Zuo, Hansheng Guo, Guangwei Gao, Tieyong Zeng, Huicheng Pi, Shunli Zhang, Joohyeok Kim, HyeonA Kim, Eunpil Park, Jae-Young Sim, Jucai Zhai, Pengcheng Zeng, Yang Liu, Chihao Ma, Yulin Huang, Junying Chen
Publikováno v:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
Publikováno v:
2022 7th International Conference on Computer and Communication Systems (ICCCS).
Publikováno v:
Briefings in bioinformatics. 23(3)
The single-cell multiomics technologies provide an unprecedented opportunity to study the cellular heterogeneity from different layers of transcriptional regulation. However, the datasets generated from these technologies tend to have high levels of