Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Peng-Jie Wong"'
Autor:
Habiba Kadiri, Peng-Jie Wong
Publikováno v:
Journal of Number Theory. 241:700-737
Autor:
Peng-Jie Wong
Publikováno v:
Journal of Number Theory. 238:967-977
Let π be a cuspidal representation of GL 2 ( A Q ) defined by a non-CM holomorphic newform of weight w ≥ 2 , and let K / Q be a totally real Galois extension with Galois group G. In this article, under Selberg's orthogonality conjecture, we show t
Autor:
Peng-Jie Wong
Publikováno v:
Bulletin of the Australian Mathematical Society. 106:288-300
Stark conjectured that for any $h\in \Bbb {N}$ , there are only finitely many CM-fields with class number h. Let $\mathcal {C}$ be the class of number fields L for which L has an almost normal subfield K such that $L/K$ has solvable Galois closure. W
Autor:
Peng-Jie Wong
Publikováno v:
Transactions of the American Mathematical Society. 373:8725-8749
Autor:
Peng-Jie Wong, Akshaa Vatwani
Publikováno v:
Acta Arithmetica. 193:321-337
Autor:
Peng-Jie Wong
For distinct unitary cuspidal automorphic representations $\pi_1$ and $\pi_2$ for $\mathrm{GL}(2)$ over a number field $F$ and any $\alpha\in\Bbb{R}$, let $\mathcal{S}_{\alpha}$ be the set of primes $v$ of $F$ for which $\lambda_{\pi_1}(v)\neq e^{i\a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43149ccf41d8ad1d0b112fabda0cf191
http://arxiv.org/abs/2203.10436
http://arxiv.org/abs/2203.10436
Autor:
Peng-Jie Wong
Publikováno v:
Mathematika. 66:200-229
Autor:
Peng-Jie Wong
Publikováno v:
Journal of Number Theory. 196:272-290
We study the Chebotarev–Sato–Tate phenomenon that concerns the distribution of Artin symbols and Frobenius angles. From the recent work of Barnet-Lamb et al., we derive some unconditional results in the case of Hilbert modular forms. Furthermore,
Given a number field $K$ of degree $n_K$ and with absolute discriminant $d_K$, we obtain an explicit bound for the number $N_K(T)$ of non-trivial zeros (counted with multiplicity), with height at most $T$, of the Dedekind zeta function $\zeta_K(s)$ o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2a844e8d1ef7c868be3a5c7a83662a36
http://arxiv.org/abs/2102.04663
http://arxiv.org/abs/2102.04663
In this article, we show that $$ \left| N (T) - \frac{T}{ 2 \pi} \log \left( \frac{T}{2\pi e}\right) \right| \le 0.1038 \log T + 0.2573 \log\log T + 9.3675 $$ where $N(T)$ denotes the number of non-trivial zeros $\rho$, with $0
Comment: Accepted
Comment: Accepted
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4e645d47b33aa30d6064cb26fdb9c0e1