Zobrazeno 1 - 10
of 96
pro vyhledávání: '"Peng, Jiaying"'
Recent studies demonstrate that Graph Neural Networks (GNNs) are vulnerable to slight but adversarially designed perturbations, known as adversarial examples. To address this issue, robust training methods against adversarial examples have received c
Externí odkaz:
http://arxiv.org/abs/2211.10896
Graph Convolutional Networks (GCNs) achieve an impressive performance due to the remarkable representation ability in learning the graph information. However, GCNs, when implemented on a deep network, require expensive computation power, making them
Externí odkaz:
http://arxiv.org/abs/2205.02767
Autor:
Li, Xue, Zhang, Ling, Liang, Yexing, Yang, Shixiong, Peng, Jiaying, Gong, Fanyi, Xu, Buzhou, Zhang, Dong
Publikováno v:
In Food Chemistry: X 30 December 2024 24
Autor:
Ouyang, Pei, Cai, Zhiyu, Peng, Jiaying, Lin, Shujing, Chen, Xiaochun, Chen, Changbin, Feng, Ziqi, Wang, Lin, Song, Guoli, Zhang, Zhonghao
Publikováno v:
In Redox Biology April 2024 70
The prevalence of online social network makes it compulsory to study how social relations affect user choice. However, most existing methods leverage only first-order social relations, that is, the direct neighbors that are connected to the target us
Externí odkaz:
http://arxiv.org/abs/2003.10149
Autor:
Chen, Liang, Li, Jintang, Peng, Jiaying, Xie, Tao, Cao, Zengxu, Xu, Kun, He, Xiangnan, Zheng, Zibin, Wu, Bingzhe
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction, and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs
Externí odkaz:
http://arxiv.org/abs/2003.05730
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Chemical Engineering Journal 1 December 2022 449
Autor:
Liu, Lufan, Shi, Yongzheng, Liu, Mengyue, Zhong, Qing, Chen, Yuqi, Li, Bingyang, Li, Zhen, Zhang, Tao, Su, Hang, Peng, Jiaying, Yang, Na, Wang, Pengfei, Fisher, Adrian, Niu, Jin, Wang, Feng
Publikováno v:
Advanced Functional Materials; 9/25/2024, Vol. 34 Issue 39, p1-8, 8p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.