Zobrazeno 1 - 10
of 483
pro vyhledávání: '"Peloso, P. M."'
We construct new $3$-dimensional variants of the classical Diederich-Fornaess worm domain. We show that they are smoothly bounded, pseudoconvex, and have nontrivial Nebenh\"{u}lle. We also show that their Bergman projections do not preserve the Sobol
Externí odkaz:
http://arxiv.org/abs/2406.04905
Autor:
Bellavita, Carlo, Peloso, Marco M.
In this paper we deal with the problem of describing the dual space $(B^1_\kappa)^*$ of the Bernstein space $B^1_\kappa$, that is the space of entire functions of exponential type at most $\kappa>0$ whose restriction to the real line is Lebesgue inte
Externí odkaz:
http://arxiv.org/abs/2308.01818
On a general Lie group $G$ endowed with a sub-Riemannian structure and of local dimension $d$, we characterize the pointwise multipliers of Triebel--Lizorkin spaces $F^{p,q}_{\alpha}$ for $p,q\in (1,\infty)$ and $\alpha>d/p$, and those of Besov space
Externí odkaz:
http://arxiv.org/abs/2303.13134
Autor:
Calzi, Mattia, Peloso, Marco M.
We consider mixed normed Bergman spaces on homogeneous Siegel domains. In the literature, two different approaches have been considered and several results seem difficult to be compared. In this paper we compare the results available in the literatur
Externí odkaz:
http://arxiv.org/abs/2302.07531
Autor:
Calzi, Mattia, Peloso, Marco M.
In this paper we consider the (ray) representations of the group $\mathrm{Aut}$ of biholomorphisms of the Siegel upper half-space $\mathcal U$ defined by $U_s(\varphi) f=(f\circ \varphi^{-1}) (J \varphi^{-1})^{s/2}$, $s\in\mathbb R$, and characterize
Externí odkaz:
http://arxiv.org/abs/2211.06057
Publikováno v:
Mediterr. J. Math., 20(3):128 (2023)
In this work we consider smooth unbounded worm domains $\mathcal Z_\lambda$ in $\mathbb C^2$ and show that the Bergman projection, densely defined on the Sobolev spaces $H^{s,p}(\mathcal Z_\lambda)$, $p\in(1,\infty)$, $s\ge0$, does not extend to a bo
Externí odkaz:
http://arxiv.org/abs/2204.05111
Autor:
Calzi, Mattia, Peloso, Marco M.
In this paper we study the boundedness of Bergman projectors on weighted Bergman spaces on homogeneous Siegel domains of Type II. As it appeared to be a natural approach in the special case of tube domains over irreducible symmetric cones, we study s
Externí odkaz:
http://arxiv.org/abs/2204.00463
Autor:
Calzi, Mattia, Peloso, Marco M.
In this paper we introduce and study Carleson and sampling measures on Bernstein spaces on a class of quadratic CR manifold called Siegel CR manifolds. These are spaces of entire functions of exponential type whose restrictions to the given Siegel CR
Externí odkaz:
http://arxiv.org/abs/2202.03752
Autor:
Calzi, Mattia, Peloso, Marco M.
In this paper we introduce and study Bernstein spaces on a class of quadratic CR manifolds, that we call Siegel CR manifolds. These are spaces of entire functions of exponential type whose restrictions to a given Siegel CR submanifold are $L^p$-integ
Externí odkaz:
http://arxiv.org/abs/2112.07994
Using the $H^\infty$-functional calculus for quaternionic operators, we show how to generate the fractional powers of some densely defined differential quaternionic operators of order $m\geq 1$, acting on the right linear quaternionic Hilbert space $
Externí odkaz:
http://arxiv.org/abs/2112.05380