Zobrazeno 1 - 10
of 111
pro vyhledávání: '"Pellacci, Benedetta"'
We complete the study concerning the minimization of the positive principal eigenvalue associated with a weighted Neumann problem settled in a bounded regular domain $\Omega\subset \mathbb{R}^{N}$, $N\ge2$, for the weight varying in a suitable class
Externí odkaz:
http://arxiv.org/abs/2407.17931
We study the existence of standing waves for the following weakly coupled system of two Schr\"odinger equations in $\mathbb{R}^N$, $N=2,3$, \[ \begin{cases} i \hslash \partial_{t}\psi_{1}=-\frac{\hslash^2}{2m_{1}}\Delta \psi_{1}+ {V_1}(x)\psi_{1}-\mu
Externí odkaz:
http://arxiv.org/abs/2311.11648
We study a weighted eigenvalue problem with anisotropic diffusion in bounded Lipschitz domains $\Omega\subset \mathbb{R}^{N} $, $N\ge1$, under Robin boundary conditions, proving the existence of two positive eigenvalues $\lambda^{\pm}$ respectively a
Externí odkaz:
http://arxiv.org/abs/2303.01401
We give an upper bound for the least energy of a sign-changing solution to the the nonlinear scalar field equation $$-\Delta u = f(u), \qquad u\in D^{1,2}(\mathbb{R}^{N}),$$ where $N\geq5$ and the nonlinearity $f$ is subcritical at infinity and super
Externí odkaz:
http://arxiv.org/abs/2209.10706
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 2, Pp 463-476 (2024)
We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation −Δu=f(u),u∈D1,2(RN), $-{\Delta}u=f\left(u\right), u\in {D}^{1,2}\left({\mathrm{R}}^{N}\right),$ where N ≥ 5 and the nonlin
Externí odkaz:
https://doaj.org/article/cb903959903b4b7e85caa799326975ff
We study the minimization of the positive principal eigenvalue associated to a weighted Neumann problem settled in a bounded smooth domain $\Omega\subset \mathbb{R}^{N}$, within a suitable class of sign-changing weights. Denoting with $u$ the optimal
Externí odkaz:
http://arxiv.org/abs/2111.01491
Existence results for a class of Choquard equations with potentials are established. The potential has a limit at infinity and it is taken invariant under the action of a closed subgroup of linear isometries of $\mathbb{R}^N$. As a consequence, the p
Externí odkaz:
http://arxiv.org/abs/2107.11759
The existence of a positive solution to a class of Choquard equations with potential going at a positive limit at infinity possibly from above or oscillating is proved. Our results include the physical case and do not require any symmetry assumptions
Externí odkaz:
http://arxiv.org/abs/2106.04519
We prove existence results of two solutions of the problem \[ \begin{cases} L(u)+u^{m-1}=\lambda u^{p-1} & \text{ in $\Omega$}, \\ \quad u>0 &\text{ in $\Omega$}, \\ \quad u=0 & \text{ on $\partial \Omega$}, \end{cases} \] where $L(v)=-{\rm div}(M(x)
Externí odkaz:
http://arxiv.org/abs/2103.07269
Publikováno v:
In Journal of Differential Equations 5 January 2024 378:303-338