Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Pekka Pankka"'
Publikováno v:
SIAM Journal on Mathematical Analysis. 54:3420-3456
Publikováno v:
Michael Puthawala
How can we design neural networks that allow for stable universal approximation of maps between topologically interesting manifolds? The answer is with a coordinate projection. Neural networks based on topological data analysis (TDA) use tools such a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0d582637334edabcc5e30d841139f90
http://arxiv.org/abs/2210.00577
http://arxiv.org/abs/2210.00577
Autor:
Pekka Pankka, Rami Luisto
Publikováno v:
Expositiones Mathematicae. 38:303-318
Stoilow's theorem from 1928 states that a continuous, open, and light map between surfaces is a discrete map with a discrete branch set. This result implies that such maps between orientable surfaces are locally modeled by power maps z -> z(k) and ad
Autor:
Pekka Pankka, Jani Onninen
Publikováno v:
Complex Analysis and its Synergies. 7
We show that a K-quasiregular $$\omega$$ -curve from a Euclidean domain to a Euclidean space with respect to a covector $$\omega$$ is locally $$(1/K)(\Vert \omega \Vert /|\omega |_{\ell _1})$$ -Holder continuous. We also show that quasiregular curves
We consider, for $n\ge 3$, $K$-quasiregular $\operatorname{vol}_N^\times$-curves $M\to N$ of small distortion $K\ge 1$ from oriented Riemannian $n$-manifolds into Riemannian product manifolds $N=N_1\times \cdots \times N_k$, where each $N_i$ is an or
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01809b41cb7cbcf9347eb3d439fb442f
http://arxiv.org/abs/2106.11871
http://arxiv.org/abs/2106.11871
Autor:
Pekka Pankka, Jani Onninen
We show that, for each $1\le p < 2$, there exists a wild involution $\mathbb S^3\to \mathbb S^3$ in the Sobolev class $W^{1,p}(\mathbb S^3,\mathbb S^3)$.
17 pages, 10 figures
17 pages, 10 figures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::76a24bdc101a8ca039786c3f39b5ab40
http://hdl.handle.net/10138/337007
http://hdl.handle.net/10138/337007
Autor:
Pekka Pankka, Juan Souto
Publikováno v:
Mathematische Annalen
Mathematische Annalen, 2022, ⟨10.1007/s00208-021-02349-6⟩
Mathematische Annalen, 2022, ⟨10.1007/s00208-021-02349-6⟩
International audience; We give a version of Gromov's compactess theorem for pseudoholomorphic curves in the case of quasiregular mappings between closed manifolds. More precisely we show that, given $K\ge 1$ and $D\ge 1$, any sequence $(f_n \colon M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b32b41b583529245fe22516226829fef
https://hal.archives-ouvertes.fr/hal-03010086
https://hal.archives-ouvertes.fr/hal-03010086
Autor:
Pekka Pankka
We extend the notion of a pseudoholomorphic vector of Iwaniec, Verchota, and Vogel to mappings between Riemannian manifolds. Since this class of mappings contains both quasiregular mappings and (pseudo)holomorphic curves, we call them quasiregular cu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::936ce440a606a7161a30c8fdeea1d3c6
http://hdl.handle.net/10138/317251
http://hdl.handle.net/10138/317251
Autor:
Pekka Pankka, Ilmari Kangasniemi
Publikováno v:
Proceedings of the London Mathematical Society. 118:701-728
Let $f\colon M \to M$ be a uniformly quasiregular self-mapping of a compact, connected, and oriented Riemannian $n$-manifold $M$ without boundary, $n\ge 2$. We show that, for $k \in \{0,\ldots, n\}$, the induced homomorphism $f^* \colon H^k(M;\mathbb
Autor:
Pekka Pankka, Juan Souto
Publikováno v:
Journal für die reine und angewandte Mathematik
Journal für die reine und angewandte Mathematik, 2019, 2019 (746), pp.149-170. ⟨10.1515/crelle-2016-0005⟩
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2019, 2019 (746), pp.149-170. ⟨10.1515/crelle-2016-0005⟩
Journal für die reine und angewandte Mathematik, 2019, 2019 (746), pp.149-170. ⟨10.1515/crelle-2016-0005⟩
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2019, 2019 (746), pp.149-170. ⟨10.1515/crelle-2016-0005⟩
We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < < 1 are free. On the other hand we construct for any ε > > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db3fbedf97de811a32d81bfa58fa016d
https://hal.science/hal-01178620
https://hal.science/hal-01178620