Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Pehova, Yanitsa"'
Let $\mathbf{G}=\{G_1, \ldots, G_m\}$ be a graph collection on a common vertex set $V$ of size $n$ such that $\delta(G_i) \geq (1+o(1))n/2$ for every $i \in [m]$. We show that $\mathbf{G}$ contains every Hamilton cycle pattern. That is, for every map
Externí odkaz:
http://arxiv.org/abs/2310.04138
Autor:
Pehova, Yanitsa, Petrova, Kalina
In 1995, Koml\'os, S\'ark\"ozy and Szemer\'edi showed that every large $n$-vertex graph with minimum degree at least $(1/2 + \gamma)n$ contains all spanning trees of bounded degree. We consider a generalization of this result to loose spanning hypert
Externí odkaz:
http://arxiv.org/abs/2301.09630
Autor:
Pehova, Yanitsa, Petrova, Kalina
Publikováno v:
In Journal of Combinatorial Theory, Series B September 2024 168:47-67
Publikováno v:
Advances in Combinatorics 2022:3, 25pp
Given a collection of graphs $\mathbf{G}=(G_1, \ldots, G_m)$ with the same vertex set, an $m$-edge graph $H\subset \cup_{i\in [m]}G_i$ is a transversal if there is a bijection $\phi:E(H)\to [m]$ such that $e\in E(G_{\phi(e)})$ for each $e\in E(H)$. W
Externí odkaz:
http://arxiv.org/abs/2107.04629
Autor:
Blumenthal, Adam, Lidický, Bernard, Pehova, Yanitsa, Pfender, Florian, Pikhurko, Oleg, Volec, Jan
Publikováno v:
Combinator. Probab. Comp. 30 (2021) 271-287
For a real constant $\alpha$, let $\pi_3^\alpha(G)$ be the minimum of twice the number of $K_2$'s plus $\alpha$ times the number of $K_3$'s over all edge decompositions of $G$ into copies of $K_2$ and $K_3$, where $K_r$ denotes the complete graph on
Externí odkaz:
http://arxiv.org/abs/1909.11371
Autor:
Chan, Timothy F. N., Kral, Daniel, Noel, Jonathan A., Pehova, Yanitsa, Sharifzadeh, Maryam, Volec, Jan
It is known that a sequence Pi_i of permutations is quasirandom if and only if the pattern density of every 4-point permutation in Pi_i converges to 1/24. We show that there is a set S of 4-point permutations such that the sum of the pattern densitie
Externí odkaz:
http://arxiv.org/abs/1909.11027
Autor:
Liebenau, Anita, Pehova, Yanitsa
In 1981 Jackson showed that the diregular bipartite tournament (a complete bipartite graph whose edges are oriented so that every vertex has the same in- and outdegree) contains a Hamilton cycle, and conjectured that in fact the edge set of it can be
Externí odkaz:
http://arxiv.org/abs/1907.08479
An ordered graph $\mathcal{G}$ is a simple graph together with a total ordering on its vertices. The (2-color) Ramsey number of $\mathcal{G}$ is the smallest integer $N$ such that every 2-coloring of the edges of the complete ordered graph on $N$ ver
Externí odkaz:
http://arxiv.org/abs/1902.00259
Autor:
Nenadov, Rajko, Pehova, Yanitsa
A seminal result of Hajnal and Szemer\'{e}di states that if a graph $G$ with $n$ vertices has minimum degree $\delta(G) \ge (r-1)n/r$ for some integer $r \ge 2$, then $G$ contains a $K_r$-factor, assuming $r$ divides $n$. Extremal examples which show
Externí odkaz:
http://arxiv.org/abs/1806.03530
Publikováno v:
Combinator. Probab. Comp. 28 (2019) 465-472
We prove the following 30-year old conjecture of Gy\H{o}ri and Tuza: the edges of every $n$-vertex graph $G$ can be decomposed into complete graphs $C_1,\ldots,C_\ell$ of orders two and three such that $|C_1|+\cdots+|C_\ell|\le (1/2+o(1))n^2$. This r
Externí odkaz:
http://arxiv.org/abs/1710.08486