Zobrazeno 1 - 10
of 162
pro vyhledávání: '"Pedrosa, A. L."'
Autor:
Borges, Yulle G. F., de Lima, Vinícius L., Miyazawa, Flávio K., Pedrosa, Lehilton L. C., de Queiroz, Thiago A., Schouery, Rafael C. S.
This paper presents theoretical and practical results for the bin packing problem with scenarios, a generalization of the classical bin packing problem which considers the presence of uncertain scenarios, of which only one is realized. For this probl
Externí odkaz:
http://arxiv.org/abs/2305.15351
In the Multiple Allocation $k$-Hub Center (MA$k$HC), we are given a connected edge-weighted graph $G$, sets of clients $\mathcal{C}$ and hub locations $\mathcal{H}$, where ${V(G) = \mathcal{C} \cup \mathcal{H}}$, a set of demands $\mathcal{D} \subset
Externí odkaz:
http://arxiv.org/abs/2205.13030
Autor:
de Pedrosa, Túlio L.1 (AUTHOR), Boudebs, Georges2 (AUTHOR), de Araujo, Renato E.1 (AUTHOR) renato.earaujo@ufpe.br
Publikováno v:
Plasmonics. Aug2024, Vol. 19 Issue 4, p1839-1844. 6p.
Autor:
Duarte, Gabriel L., Eto, Hiroshi, Hanaka, Tesshu, Kobayashi, Yasuaki, Kobayashi, Yusuke, Lokshtanov, Daniel, Pedrosa, Lehilton L. C., Schouery, Rafael C. S., Souza, Uéverton S.
The cut-set $\partial(S)$ of a graph $G=(V,E)$ is the set of edges that have one endpoint in $S\subset V$ and the other endpoint in $V\setminus S$, and whenever $G[S]$ is connected, the cut $[S,V\setminus S]$ of $G$ is called a connected cut. A bond
Externí odkaz:
http://arxiv.org/abs/2007.04513
$\newcommand{\cala}{\mathcal{A}}$ In MAXSPACE, given a set of ads $\cala$, one wants to schedule a subset ${\cala'\subseteq\cala}$ into $K$ slots ${B_1, \dots, B_K}$ of size $L$. Each ad ${A_i \in \cala}$ has a size $s_i$ and a frequency $w_i$. A sch
Externí odkaz:
http://arxiv.org/abs/2006.13430
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Duarte, Gabriel L., Lokshtanov, Daniel, Pedrosa, Lehilton L. C., Schouery, Rafael C. S., Souza, Uéverton S.
A bond of a graph $G$ is an inclusion-wise minimal disconnecting set of $G$, i.e., bonds are cut-sets that determine cuts $[S,V\setminus S]$ of $G$ such that $G[S]$ and $G[V\setminus S]$ are both connected. Given $s,t\in V(G)$, an $st$-bond of $G$ is
Externí odkaz:
http://arxiv.org/abs/1910.01071
In the k-center problem, given a metric space V and a positive integer k, one wants to select k elements (centers) of V and an assignment from V to centers, minimizing the maximum distance between an element of V and its assigned center. One of the m
Externí odkaz:
http://arxiv.org/abs/1608.01721
Publikováno v:
AIDS Reviews; Jul-Sep2024, Vol. 26 Issue 3, p121-129, 9p
Autor:
Lage, Nara N., Layosa, Marjorie Anne A., Arbizu, Shirley, Chew, Boon P., Pedrosa, Maria L., Mertens-Talcott, Susanne, Talcott, Stephen, Noratto, Giuliana D.
Publikováno v:
In Journal of Functional Foods January 2020 64