Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Pedro Ubilla"'
Autor:
Joao Marcos Do O, Pedro Ubilla
Publikováno v:
Electronic Journal of Differential Equations, Vol 2003, Iss 15, Pp 1-14 (2003)
We establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter $ lambda $, we consider the system $$displaylines{ -Delta v = lambda f(u) quad hbox
Externí odkaz:
https://doaj.org/article/fbc114bcf25b4846a8f40fdb7967ce1d
Autor:
Justino Sanchez, Pedro Ubilla
Publikováno v:
Electronic Journal of Differential Equations, Vol 2000, Iss 50, Pp 1-9 (2000)
We establish the exact number of positive solutions for the boundary-value problem $$displaylines{ -(|u'|^{m-2} u')'=lambda u^q + u^pquad hbox{in }(0,1)cr u(0)= u(1)=0,, }$$ where $0leq q < m- 1 < p$ and $lambda$ is positive.
Externí odkaz:
https://doaj.org/article/bde38172a37043c4acb2ab8d3885aef6
Publikováno v:
Electronic Journal of Differential Equations, Vol 1995, Iss 10, Pp 1-22 (1995)
Dirichlet problem of the form $${ m div,} (A(|Du|)Du)=f(u) { m in } Omega $$ $$ u = 0 { m on } partialOmega $$ is studied by using blow-up techniques. It is proven here that by choosing the functions $sA(s)$ and $f(s)$ among a certain class called {e
Externí odkaz:
https://doaj.org/article/7562757f0b2b4a7f9c7cc72abf6d55b1
Autor:
Patricio Cerda, Pedro Ubilla
Publikováno v:
Boundary Value Problems, Vol 2008 (2008)
We study existence of positive solutions of the nonlinear system −(p1(t,u,v)u′)′= h1(t)f1(t,u,v) in (0,1); −(p2(t,u,v)v′)′=h2(t)f2(t,u,v) in (0,1); u(0)=u(1)=v(0)=v(
Externí odkaz:
https://doaj.org/article/0e8ccfb954534c5992b5aa66e8f91283
Publikováno v:
Journal of Inequalities and Applications, Vol 2007 (2007)
We obtain a solution of the quasilinear equation −Δpu=f(u) in Ω, u=0, on ∂Ω. Here the nonlinearity f is superlinear at zero, and it is located near infinity between two functions that belong to a class of
Externí odkaz:
https://doaj.org/article/cefff92b770b45f8af959c5935984a7c
Publikováno v:
Mathematische Nachrichten. 295:44-57
Publikováno v:
Calculus of Variations and Partial Differential Equations. 62
We consider a one-dimensional integral inequality of Moser type: set $$\begin{aligned} \quad J_c(v) = \int _{0}^1 {\textrm{e}}^{c(s) v^2(s)} ds \quad \quad \hbox { and consider } \quad \quad \sup _{ \{\int _0^1 |v'|^2 = 1, v(0) = 0\}} J_c(v) \end{ali
Autor:
Marcelo C. Ferreira, Pedro Ubilla
Publikováno v:
Annales Henri Poincaré. 23:25-47
We establish the existence and multiplicity of solutions for a Kirchhoff-type problem in $$\mathbb R^4$$ involving a critical and concave–convex nonlinearity. Since in dimension four, the Sobolev critical exponent is $$2^*=4$$ , there is a tie betw
Publikováno v:
Revista Matemática Iberoamericana. 37:749-773
The aim of this paper is to prove the existence of radially symmetric k-admissible solutions for the following Dirichlet problem associated with the k-th Hessian operator: ⎧⎩⎨⎪⎪Sk[u]=f(x,−u)u2k.
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 151:187-201
We discuss the existence, nonexistence and multiplicity of solutions for a class of elliptic equations in the unit ball with zero Dirichlet boundary conditions involving nonlinearities with supercritical growth. By using Pohozaev type identity we pro