Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Pedro Morin"'
Publikováno v:
IMA Journal of Numerical Analysis.
We study approximation classes for adaptive time-stepping finite element methods for time-dependent partial differential equations. We measure the approximation error in $L_2([0,T)\times \varOmega )$ and consider the approximation with discontinuous
Autor:
Pedro Morin, Eduardo M. Garau
Publikováno v:
Numerical Methods for Partial Differential Equations. 33:1266-1282
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingenieria Quimica; Argentina
We analyze the existence of solutions to the stationary problem from a mathematical model for convective transport in nanofluids including thermophoretic effects that is very similar to the celebrated model of Buongiorno [6] .
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d4e81d8a85174a8a935d36bbb5021455
http://arxiv.org/abs/1911.04958
http://arxiv.org/abs/1911.04958
Autor:
Pedro Morin, Eberhard Bänsch
We study the stationary version of a thermodynamically consistent variant of the Buongiorno model describing convective transport in nanofluids. Under some smallness assumptions it is proved that there exist regular solutions. Based on this regularit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71ab774abdae36a860275326adbab598
Publikováno v:
GREDOS. Repositorio Institucional de la Universidad de Salamanca
instname
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
instname
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We present a new AFEM for the Laplace-Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally $W^1_\infty$ and piecewise in a suitable Besov class embedded in $C^{1,\alpha}$ with $\alpha \in (0,1]$. The idea is t
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We present a Newton type algorithm to find parametric surfaces of prescribed mean curvature with a fixed given boundary. In particular, it applies to the problem of minimal surfaces. The algorithm relies on some global regularity of the spaces where
Publikováno v:
Numerical Methods for Partial Differential Equations. 33:1018-1042
We consider Poisson's equation with a finite number of weighted Dirac masses as a source term, together with its discretization by means of conforming finite elements. For the error in fractional Sobolev spaces, we propose residual-type a posteriori
We introduce a framework for spline spaces of hierarchical type, based on a parent-children relation, which is very convenient for the analysis as well as the implementation of adaptive isogeometric methods. Such framework makes it simple to create h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0189a5dce0ff023f5f25e7e6f9a604e9
http://arxiv.org/abs/1808.02053
http://arxiv.org/abs/1808.02053
We introduce new results about the shape derivatives of scalar- and vector-valued functions, extending the results from (Dogan-Nochetto 2012) to more general surface energies. They consider surface energies defined as integrals over surfaces of funct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fe696874d262c4ddd0c81b93401393ed
http://arxiv.org/abs/1708.07440
http://arxiv.org/abs/1708.07440
Autor:
Fernando D. Gaspoz, Pedro Morin
Publikováno v:
Mathematics of Computation. 83:2127-2160
We provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximat