Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Pedro A. S. Salomão"'
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::873cafb01fe7f0f889c1d6939f8ab26b
Publikováno v:
Journal of fixed point theory and applications : JFPTA 24(2), 45 (2022). doi:10.1007/s11784-022-00950-z
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
We establish some new existence results for global surfaces of section of dynamically convex Reeb flows on the three-sphere. These sections often have genus, and are the result of a combination of pseudo-holomorphic curve methods with some elementary
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b811f1468c24159b587d01f91ac2ac63
https://publications.rwth-aachen.de/record/848251
https://publications.rwth-aachen.de/record/848251
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The systolic ratio of a contact form on a closed three-manifold is the quotient of the square of the shortest period of closed Reeb orbits by the contact volume. We show that every co-orientable contact structure on any closed three-manifold is defin
Publikováno v:
Memoirs of the American Mathematical Society. 252
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We construct a dynamically convex contact form on the three-sphere whose systolic ratio is arbitrarily close to 2. This example is related to a conjecture of Viterbo, whose validity would imply that the systolic ratio of a convex contact form does no
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75fb27ed17ee109d73ea871ddd14bf89
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We prove that the systolic ratio of a sphere of revolution $S$ does not exceed $\pi$ and equals $\pi$ if and only if $S$ is Zoll. More generally, we consider the rotationally symmetric Finsler metrics on a sphere of revolution which are defined by sh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b4257248dbab935210ca7520c3583ee5
In this article the authors study Hamiltonian flows associated to smooth functions $H:\mathbb R^4 \to \mathbb R$ restricted to energy levels close to critical levels. They assume the existence of a saddle-center equilibrium point $p_c$ in the zero en
We survey some recent developments in the quest for global surfaces of section for Reeb flows in dimension three using methods from Symplectic Topology. We focus on applications to geometry, including existence of closed geodesics and sharp systolic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cda42258daad2925f47093ab809e4164
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We study two-degree-of-freedom Hamiltonian systems. Let us assume that the zero energy level of a real-analytic Hamiltonian function $H:\mathbb{R}^4 \to \mathbb{R}$ contains a saddle-center equilibrium point lying in a strictly convex sphere-like sin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f32f56a31c7c80b17f6df6032a5cb87c
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The systolic ratio of a contact form $\alpha$ on the three-sphere is the quantity \[ \rho_{\mathrm{sys}}(\alpha) = \frac{T_{\min}(\alpha)^2}{\mathrm{vol}(S^3,\alpha\wedge d\alpha)}, \] where $T_{\min}(\alpha)$ is the minimal period of closed Reeb orb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::03e4aea579b10b5bbddad4e1d9c55cb6