Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Pérez, T. E."'
Orthogonal polynomials on the product domain $[a_1,b_1] \times [a_2,b_2]$ with respect to the inner product $$ \langle f,g \rangle_S = \int_{a_1}^{b_1} \int_{a_2}^{b_2} \nabla f(x,y)\cdot \nabla g(x,y)\, w_1(x)w_2(y) \,dx\, dy + \lambda f(c_1,c_2)g(c
Externí odkaz:
http://arxiv.org/abs/1406.0762
Let $\{\mathbb{P}_n\}_{n\ge 0}$ and $\{\mathbb{Q}_n\}_{n\ge 0}$ be two monic polynomial systems in several variables satisfying the linear structure relation $$\mathbb{Q}_n = \mathbb{P}_n + M_n \mathbb{P}_{n-1}, \quad n\ge 1,$$ where $M_n$ are consta
Externí odkaz:
http://arxiv.org/abs/1307.5999
Let $d\nu$ be a measure in $\mathbb{R}^d$ obtained from adding a set of mass points to another measure $d\mu$. Orthogonal polynomials in several variables associated with $d\nu$ can be explicitly expressed in terms of orthogonal polynomials associate
Externí odkaz:
http://arxiv.org/abs/0911.2818
Differential properties for orthogonal polynomials in several variables are studied. We consider multivariate orthogonal polynomials whose gradients satisfy some quasi--orthogonality conditions. We obtain several characterizations for these polynomia
Externí odkaz:
http://arxiv.org/abs/math/0610153
Classical orthogonal polynomials in one variable can be characterized as the only orthogonal polynomials satisfying a Rodrigues formula. In this paper, using the second kind Kronecker power of a matrix, a Rodrigues formula is introduced for classical
Externí odkaz:
http://arxiv.org/abs/math/0610128
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematics of Computation, 2016 Jul 01. 85(300), 1837-1859.
Externí odkaz:
https://www.jstor.org/stable/mathcomp.85.300.1837
Publikováno v:
Scopus-Elsevier
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::12418d2642f27c63e90ed2dc9cc49cd2
http://www.scopus.com/inward/record.url?eid=2-s2.0-0043226187&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-0043226187&partnerID=MN8TOARS
Publikováno v:
Scopus-Elsevier
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8dba6fe8ccca38e4453b214073281335
http://www.scopus.com/inward/record.url?eid=2-s2.0-0010914865&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-0010914865&partnerID=MN8TOARS
Publikováno v:
Scopus-Elsevier
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c9f5a1e773309ef2dc0f85ef5bf012e3
http://www.scopus.com/inward/record.url?eid=2-s2.0-3543001623&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-3543001623&partnerID=MN8TOARS