Zobrazeno 1 - 10
of 2 850
pro vyhledávání: '"Peña Juan"'
The property of exponential dichotomy can be seen as a generalization of the hyperbolicity condition for non autonomous linear finite dimensional systems of ordinary differential equations. In 1978 W.A. Coppel proved that the exponential dichotomy on
Externí odkaz:
http://arxiv.org/abs/2411.05765
A set of n non-collinear points in the Euclidean plane defines at least n different lines. Chen and Chv\'tal in 2008 conjectured that the same results is true in metric spaces for an adequate definition of line. More recently, it was conjectured in 2
Externí odkaz:
http://arxiv.org/abs/2410.21433
Autor:
Fernandes, Cristina G., Lintzmayer, Carla N., Peña, Juan P., Santos, Giovanne, Trujillo-Negrete, Ana, Zamora, Jose
For a digraph $D$ of order $n$ and an integer $1 \leq k \leq n-1$, the $k$-token digraph of $D$ is the graph whose vertices are all $k$-subsets of vertices of $D$ and, given two such $k$-subsets $A$ and $B$, $(A,B)$ is an arc in the $k$-token digraph
Externí odkaz:
http://arxiv.org/abs/2410.20189
Chen and Chv\'atal conjectured in 2008 that in any finite metric space either there is a line containing all the points - a universal line -, or the number of lines is at least the number of points. This is a generalization of a classical result due
Externí odkaz:
http://arxiv.org/abs/2405.19208
The combined matrix is a very useful concept for many applications. Almost strictly sign regular (ASSR) matrices form an important structured class of matrices with two possible zero patterns, which are either type-I staircase or type-II staircase. W
Externí odkaz:
http://arxiv.org/abs/2402.10933
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jiménez, Andrea, Knauer, Kolja, Lintzmayer, Carla Negri, Matamala, Martín, Peña, Juan Pablo, Quiroz, Daniel A., Sambinelli, Maycon, Wakabayashi, Yoshiko, Yu, Weiqiang, Zamora, José
The proper conflict-free chromatic number, $\chi_{pcf}(G)$, of a graph $G$ is the least $k$ such that $G$ has a proper $k$-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The proper odd chro
Externí odkaz:
http://arxiv.org/abs/2308.00170