Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Pawilowski, Boris"'
Autor:
Pawilowski, Boris
Dans une série de travaux Zied Ammari et Francis Nier ont développé des méthodes pour étudier la dynamique de champ moyen bosonique pour des états quantiques généraux pouvant présenter des corrélations. Ils ont obtenu des formules pour déc
Externí odkaz:
http://www.theses.fr/2015REN1S163
Autor:
Pawilowski, Boris
The mean field approximation is numerically validated in the bosonic case by considering the time evolution of quantum states and their associated reduced density matrices by many-body Schr\"odinger dynamics. The model phase-space is finite-dimension
Externí odkaz:
http://arxiv.org/abs/1508.00452
Publikováno v:
Communications in Mathematical Sciences 14 (2016) No. 5 1417-1442
We consider the time evolution of quantum states by many-body Schr\"odinger dynamics and study the rate of convergence of their reduced density matrices in the mean field limit. If the prepared state at initial time is of coherent or factorized type
Externí odkaz:
http://arxiv.org/abs/1411.6284
Autor:
Pawilowski, Boris, Liard, Quentin
We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the W
Externí odkaz:
http://arxiv.org/abs/1402.4261
Autor:
Pawilowski, Boris
The mean field approximation is numerically validated in the bosonic case by considering the time evolution of quantum states and their associated reduced density matrices by many-body Schrödinger dynamics. The model phase-space is finite-dimensiona
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::04d276d934f70f145e49ad3ae5762ed9
https://hal.science/hal-01183707/file/article.pdf
https://hal.science/hal-01183707/file/article.pdf
Autor:
Pawilowski , Boris
The mean field approximation is numerically validated in the bosonic case by considering the time evolution of quantum states and their associated reduced density matrices by many-body Schr\"odinger dynamics. The model phase-space is finite-dimension
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9eae55a709ef68bad653c1738dbbbc2f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Communications in Mathematical Sciences
Communications in Mathematical Sciences, 2016, 14 (5), pp.1417-1442. ⟨10.4310/CMS.2016.v14.n5.a9⟩
Communications in Mathematical Sciences, International Press, 2016, 14 (5), pp.1417-1442. 〈10.4310/CMS.2016.v14.n5.a9〉
Communications in Mathematical Sciences, International Press, 2016, 14 (5), pp.1417-1442. ⟨10.4310/CMS.2016.v14.n5.a9⟩
Communications in Mathematical Sciences, 2016, 14 (5), pp.1417-1442. ⟨10.4310/CMS.2016.v14.n5.a9⟩
Communications in Mathematical Sciences, International Press, 2016, 14 (5), pp.1417-1442. 〈10.4310/CMS.2016.v14.n5.a9〉
Communications in Mathematical Sciences, International Press, 2016, 14 (5), pp.1417-1442. ⟨10.4310/CMS.2016.v14.n5.a9⟩
We consider the time evolution of quantum states by many-body Schr\"odinger dynamics and study the rate of convergence of their reduced density matrices in the mean field limit. If the prepared state at initial time is of coherent or factorized type
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::637b9a892beaf530d86170e2190c9767
https://hal.science/hal-01090965
https://hal.science/hal-01090965