Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Paweł M. Wójcicki"'
Publikováno v:
Fuzzy Sets and Systems. 417:130-139
In the first part of this paper we consider the α-cut of a sum of two fuzzy sets. We show that the α-cut of such a sum can be written as one closed interval determined by the minimum and maximum of some special functions, over a set uniquely determ
Autor:
Paweł M. Wójcicki, Steven G. Krantz
Publikováno v:
Complex Analysis and its Synergies. 7
In this paper we introduce a new distance by means of the so-called Szegő kernel and examine some basic properties and its relationship with the so-called Skwarczyński distance. We also examine the relationship between this distance, and the so-cal
Publikováno v:
Advances in Intelligent Systems and Computing ISBN: 9783030470234
The aim of this paper is to describe a shifted family of confidence intervals and to examine under which conditions the family is a level set. This conditions deal with the two functions of possibility level that parameterize the confidence interval.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c771457a0ff0a057fc8d7a83f4e237e0
https://doi.org/10.1007/978-3-030-47024-1_27
https://doi.org/10.1007/978-3-030-47024-1_27
Publikováno v:
Czechoslovak Mathematical Journal. 68:829-842
We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space ℂN, and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted
Autor:
Paweł M. Wójcicki, Grzegorz Łysik
Publikováno v:
Annales Polonici Mathematici. 111:145-148
Publikováno v:
Trends in Mathematics ISBN: 9783319317557
M. Skwarczynski (†) introduced pseudodistance on domains in Cn which under some conditions (if the domain is bounded for instance) gives rise to biholomorphically invariant distance, i.e., invariant under biholomorphic transformations. One can find
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::785aebf765cf19b20e25612a8fc73dee
https://doi.org/10.1007/978-3-319-31756-4_29
https://doi.org/10.1007/978-3-319-31756-4_29
Publikováno v:
Trends in Mathematics ISBN: 9783319317557
We study the limit behavior of weighted Bergman kernels on a sequence of domains in a manifold M and show that under some conditions on domains and weights, weighted Bergman kernel converges uniformly on compact sets.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::88ee5e8a2efbde585b8a1ecd6401dbae
https://doi.org/10.1007/978-3-319-31756-4_28
https://doi.org/10.1007/978-3-319-31756-4_28
In the present paper we show that the Gompertz function, the Fisher-Tippett and the Gumbel probability distributions are related to both Stirling numbers of the second kind and Bernoulli numbers. Especially we prove for the Gumbel probability density
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7e2b2ae05f5cd6ee3c499de72f9e6c6
http://arxiv.org/abs/1511.03070
http://arxiv.org/abs/1511.03070
Autor:
Steven G. Krantz, Paweł M. Wójcicki
Publikováno v:
Complex Analysis and Operator Theory. 11(1):217-225
We study the connection between the weighted Bergman kernel and the Green’s function on a domain \(W\subset \mathbb {C}\) for which the Green’s function exists.