Zobrazeno 1 - 10
of 236
pro vyhledávání: '"Pavlov, M. P."'
Autor:
Ferapontov, E. V., Pavlov, M. V.
Macroscopic dynamics of soliton gases can be analytically described by the thermodynamic limit of the Whitham equations, yielding an integro-differential kinetic equation for the density of states. Under a delta-functional ansatz, the kinetic equatio
Externí odkaz:
http://arxiv.org/abs/2109.11962
We classify 2+1 dimensional integrable systems with nonlocality of the intermediate long wave type. Links to the 2+1 dimensional waterbag system are established. Dimensional reductions of integrable systems constructed in this paper provide dispersiv
Externí odkaz:
http://arxiv.org/abs/2106.09602
Autor:
Gerdjikov, V. S., Stefanov, A. A., Iliev, I. D., Boyadjiev, G. P., Smirnov, A. O., Matveev, V. B., Pavlov, M. V.
We constructed the three nonequivalent gradings in the algebra $D_4 \simeq so(8)$. The first one is the standard one obtained with the Coxeter automorphism $C_1=S_{\alpha_2} S_{\alpha_1}S_{\alpha_3}S_{\alpha_4}$ using its dihedral realization. In the
Externí odkaz:
http://arxiv.org/abs/2006.16323
Autor:
Pavlov, M. V., Vitolo, R. F.
Publikováno v:
Journal of Physics A: Mathematical and Theoretical, Letter, Volume 52, Number 20 (2019)
The Oriented Associativity equation plays a fundamental role in the theory of Integrable Systems. In this paper we prove that the equation, besides being Hamiltonian with respect to a first-order Hamiltonian operator, has a third-order non-local homo
Externí odkaz:
http://arxiv.org/abs/1812.01413
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bogdanov, L. V., Pavlov, M. V.
We consider six-dimensional heavenly equation as a reduction in the framework of general six-dimensional linearly degenerate dispersionless hierarchy. We characterise the reduction in terms of wave functions, introduce generating relation, Lax-Sato e
Externí odkaz:
http://arxiv.org/abs/1806.01500
Publikováno v:
Journal of Geometry and Physics Volume 138, April 2019, Pages 285-296
Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge me
Externí odkaz:
http://arxiv.org/abs/1805.00746
Publikováno v:
Lett. Math. Phys. 108, Issue 6 (2018), 1525-1550
We investigate $n$-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in
Externí odkaz:
http://arxiv.org/abs/1703.06173
Three dimensional nonlinear wave interactions have been analytically described. The procedure under interest can be applied to three dimensional quasilinear systems of first order, whose hydrodynamic reductions are homogeneous semi-Hamiltonian hydrod
Externí odkaz:
http://arxiv.org/abs/1612.00162
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.