Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Pavel Safronov"'
Autor:
Pavel Safronov, Brian R. Williams
Publikováno v:
Communications in Mathematical Physics.
Publikováno v:
Selecta Mathematica. 28
Publikováno v:
Brochier, A, Jordan, D, Safronov, P & Snyder, N 2021, ' Invertible braided tensor categories ', Algebraic and Geometric Topology, vol. 21, no. 4, pp. 2107-2140 . https://doi.org/10.2140/agt.2021.21.2107
We prove that a finite braided tensor category A is invertible in the Morita 4-category BrTens of braided tensor categories if, and only if, it is non-degenerate. This includes the case of semisimple modular tensor categories, but also non-semisimple
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17169ebb601a006c2ea6f0faf1e65f02
https://hdl.handle.net/20.500.11820/449b4c8b-4711-41b2-b300-3ad02317b1d7
https://hdl.handle.net/20.500.11820/449b4c8b-4711-41b2-b300-3ad02317b1d7
Publikováno v:
Вестник Иркутского государственного технического университета, Vol 3 (2019)
Publikováno v:
ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference; Vol 3 (2021): Environment. Technology. Resources. Proceedings of the 13th International Scientific and Practical Conference. Volume 3; 382-386
The problem of the emergence of turbulence is one of the unsolved problems of physics and technology of the 20th century. It is noted that in order to understand the emergence of turbulence in a viscous heat-conducting gas, it is necessary to take in
Publikováno v:
Hoyois, M, Safronov, P, Scherotzke, S & Sibilla, N 2021, ' The categorified Grothendieck-Riemann-Roch theorem ', Compositio Mathematica, vol. 157, no. 1, pp. 154-214 . https://doi.org/10.1112/S0010437X20007642
Compositio Mathematica
Compositio Mathematica
In this paper we prove a categorification of the Grothendieck-Riemann-Roch theorem. Our result implies in particular a Grothendieck-Riemann-Roch theorem for To\"en and Vezzosi's secondary Chern character. As a main application, we establish a compari
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57c32f66081c7120f218282fd89bf72b
http://hdl.handle.net/20.500.11767/128270
http://hdl.handle.net/20.500.11767/128270
We study the derived critical locus of a function $f:[X/G]\to \mathbb{A}_{\mathbb{K}}^1$ on the quotient stack of a smooth affine scheme $X$ by the action of a smooth affine group scheme $G$. It is shown that $\mathrm{dCrit}(f) \simeq [Z/G]$ is a der
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e758ae2e72df7ce29707a8936977481e
Publikováno v:
Gunningham, S, Jordan, D & Safronov, P 2022, ' The finiteness conjecture for skein modules ', Inventiones mathematicae . https://doi.org/10.1007/s00222-022-01167-0
We give a new, algebraically computable formula for skein modules of closed 3-manifolds via Heegaard splittings. As an application, we prove that skein modules of closed 3-manifolds are finite-dimensional, resolving in the affirmative a conjecture of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37e9d54e35a53f3a99fe3643df7a99ba
https://www.zora.uzh.ch/id/eprint/212098/
https://www.zora.uzh.ch/id/eprint/212098/
Publikováno v:
Haugseng, R, Melani, V & Safronov, P 2020, ' Shifted Coisotropic Correspondences ', Journal of the Institute of Mathematics of Jussieu . https://doi.org/10.1017/S1474748020000274
We define (iterated) coisotropic correspondences between derived Poisson stacks, and construct symmetric monoidal higher categories of derived Poisson stacks where the $i$-morphisms are given by $i$-fold coisotropic correspondences. Assuming an expec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::21563ab348cebffbb7c3177d8b649b88
https://doi.org/10.5167/uzh-209750
https://doi.org/10.5167/uzh-209750
Autor:
Pavel Safronov, Brent Pym
Publikováno v:
International Mathematics Research Notices
Pym, B & Safronov, P 2018, ' Shifted symplectic Lie algebroids ', International Mathematics Research Notices, vol. 2020, no. 21, pp. 7489–7557 . https://doi.org/10.1093/imrn/rny215
Pym, B & Safronov, P 2018, ' Shifted symplectic Lie algebroids ', International Mathematics Research Notices, vol. 2020, no. 21, pp. 7489–7557 . https://doi.org/10.1093/imrn/rny215
Shifted symplectic Lie and $L_\infty$ algebroids model formal neighbourhoods of manifolds in shifted symplectic stacks, and serve as target spaces for twisted variants of classical AKSZ topological field theory. In this paper, we classify zero-, one-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::771886a08e7ed8ebcaf95526a5a72456
https://hdl.handle.net/21.11116/0000-0007-0CCB-821.11116/0000-0007-0CCD-621.11116/0000-0007-A258-F
https://hdl.handle.net/21.11116/0000-0007-0CCB-821.11116/0000-0007-0CCD-621.11116/0000-0007-A258-F