Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Pavel A. Kusochek"'
Autor:
Hjalte V. Kiefer, Elisabeth Gruber, Jeppe Langeland, Pavel A. Kusochek, Anastasia V. Bochenkova, Lars H. Andersen
Publikováno v:
Nature Communications, Vol 10, Iss 1, Pp 1-9 (2019)
The primary photoresponse of protonated Schiff-base retinal in visual and bacterial rhodopsins is fast sub-ps isomerisation. Here, the authors show that the fast photoisomerization of rhodopsin is related to an intrinsic retinal property, whereas bac
Externí odkaz:
https://doaj.org/article/62bae373a5fb4f23abd5d636560ac791
Autor:
Elisabeth Gruber, Adil M. Kabylda, Mogens Brøndsted Nielsen, Anne P. Rasmussen, Ricky Teiwes, Pavel A. Kusochek, Anastasia V. Bochenkova, Lars H. Andersen
Publikováno v:
Gruber, E, Kabylda, A M, Nielsen, M B, Rasmussen, A P, Teiwes, R, Kusochek, P A, Bochenkova, A V & Andersen, L H 2022, ' Light Driven Ultrafast Bioinspired Molecular Motors : Steering and Accelerating Photoisomerization Dynamics of Retinal ', Journal of the American Chemical Society, vol. 144, no. 1, pp. 69-73 . https://doi.org/10.1021/jacs.1c10752
Photoisomerization of retinal protonated Schiff base in microbial and animal rhodopsins are strikingly ultrafast and highly specific. Both protein environments provide conditions for fine-tuning the photochemistry of their chromophores. Here, by comb
Publikováno v:
The journal of physical chemistry letters. 12(35)
The light-driven sodium-pump rhodopsin KR2 exhibits ultrafast photoisomerization dynamics of its all-trans protonated Schiff-base retinal (PSBR). However, the excited-state decay of KR2 also shows slow picosecond time constants, which are attributed
Autor:
David Bulkley, Ilya A. Osterman, I. A. Malanicheva, Andrey L. Konevega, Marina V. Serebryakova, Yury S. Polikanov, Thomas A. Steitz, Olga A. Dontsova, Vadim N. Tashlitsky, Petr V. Sergiev, Karen J. Shaw, Teresa Szal, Alexander S. Mankin, Marina V. Rodnina, Pavel A. Kusochek, T. A. Efimenko, Alexey A. Bogdanov, Olga V. Efremenkova
Publikováno v:
Molecular Cell
We demonstrate that the antibiotic amicoumacin A (AMI) whose cellular target was unknown, is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The cry