Zobrazeno 1 - 10
of 110
pro vyhledávání: '"Pava, Jaime Angulo"'
Autor:
Pava, Jaime Angulo, Cavalcante, Márcio
In this work, we establish local well-posedness for the Korteweg-de Vries model on a balanced star graph with a structure represented by semi-infinite edges, by considering a boundary condition of $\delta$-type at the {unique} graph-vertex. Also, we
Externí odkaz:
http://arxiv.org/abs/2402.01561
The purpose of this paper is to prove that, for a large class of nonlinear evolution equations known as scalar viscous balance laws, the spectral (linear) instability condition of periodic traveling wave solutions implies their orbital (nonlinear) in
Externí odkaz:
http://arxiv.org/abs/2209.01051
Autor:
Pava, Jaime Angulo, Plaza, Ramón G.
The aim of this work is to establish a instability study for stationary kink and antikink/kink profiles solutions for the sine-Gordon equation on a metric graph with a structure represented by a Y-junction so-called a Josephson tricrystal junction. B
Externí odkaz:
http://arxiv.org/abs/2104.09911
Autor:
Pava, Jaime Angulo, Plaza, Ramón G.
The sine-Gordon equation on a metric graph with a structure represented by a $\mathcal{Y}$-junction, is considered. The model is endowed with boundary conditions at the graph-vertex of $\delta'$-interaction type, expressing continuity of the derivati
Externí odkaz:
http://arxiv.org/abs/2101.02173
Autor:
Pava, Jaime Angulo, Cavalcante, Márcio
The aim of this work is to establish a linear instability criterium of stationary solutions for the Korteweg-de Vries model on a star graph with a structure represented by a finite collections of semi-infinite edges. By considering a boundary conditi
Externí odkaz:
http://arxiv.org/abs/2006.12571
Autor:
Pava, Jaime Angulo, Plaza, Ramón G.
The aim of this work is to establish a linear instability result of stationary, kink and kink/anti-kink soliton profile solutions for the sine-Gordon equation on a metric graph with a structure represented by a $\mathcal Y$-junction. The model consid
Externí odkaz:
http://arxiv.org/abs/2006.12398
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, a nonlinear Schr\"odinger equation with an attractive (focusing) delta potential and a repulsive (defocusing) double power nonlinearity in one spatial dimension is considered. It is shown, via explicit construction, that both standing
Externí odkaz:
http://arxiv.org/abs/1903.10653
We study analytically and numerically the existence and orbital stability of the peak-standing-wave solutions for the cubic-quintic nonlinear Schrodinger equation with a point interaction determined by the delta of Dirac. We study the cases of attrac
Externí odkaz:
http://arxiv.org/abs/1805.10226