Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Pautrel, Thibault"'
We further investigate the relations between the large degree asymptotics of the number of real zeros of random trigonometric polynomials with dependent coefficients and the underlying correlation function. We consider trigonometric polynomials of th
Externí odkaz:
http://arxiv.org/abs/2102.09653
Autor:
Pautrel, Thibault
We consider random trigonometric polynomials of the form \[ f_n(t):=\frac{1}{\sqrt{n}} \sum_{k=1}^{n}a_k \cos(k t)+b_k \sin(k t), \] where $(a_k)_{k\geq 1}$ and $(b_k)_{k\geq 1}$ are two independent stationary Gaussian processes with the same correla
Externí odkaz:
http://arxiv.org/abs/2002.01380
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pautrel, Thibault
Publikováno v:
Probabilités [math.PR]. Université de Rennes, 2022. Français. ⟨NNT : 2022REN1S015⟩
We study in this thesis the asymptotic behavior (almost-sure, in distribution, on average) of the random variable counting the number of zeros of random trigonometric functions on a given interval. We specifically investigate the universality phenome
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2755::51983957460892df25acd12513cd4479
https://theses.hal.science/tel-03814205
https://theses.hal.science/tel-03814205
Autor:
Pautrel Thibault
Publikováno v:
Electron. Commun. Probab.
Electronic Communications in Probability
Electronic Communications in Probability, 2020, 25, paper no. 36, 13 pp. ⟨10.1214/20-ECP314⟩
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2020, 25, paper no. 36, 13 pp. ⟨10.1214/20-ECP314⟩
Electronic Communications in Probability
Electronic Communications in Probability, 2020, 25, paper no. 36, 13 pp. ⟨10.1214/20-ECP314⟩
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2020, 25, paper no. 36, 13 pp. ⟨10.1214/20-ECP314⟩
We consider random trigonometric polynomials of the form \[ f_n(t):=\frac{1}{\sqrt{n}} \sum_{k=1}^{n}a_k \cos(k t)+b_k \sin(k t), \] where $(a_k)_{k\geq 1}$ and $(b_k)_{k\geq 1}$ are two independent stationary Gaussian processes with the same correla
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6be5e08292ec47822857b0933c332749