Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Pauline Trouvé-Peloux"'
Autor:
Alice Fontbonne, Pauline Trouvé-Peloux, Frédéric Champagnat, Gabriel Jobert, Guillaume Druart
Publikováno v:
Sensors, Vol 23, Iss 23, p 9462 (2023)
Many works in the state of the art are interested in the increase of the camera depth of field (DoF) via the joint optimization of an optical component (typically a phase mask) and a digital processing step with an infinite deconvolution support or a
Externí odkaz:
https://doaj.org/article/7078eaee42c74bdebb55fa7b871e8014
Publikováno v:
Sensors, Vol 19, Iss 3, p 687 (2019)
In the context of underwater robotics, the visual degradation induced by the medium properties make difficult the exclusive use of cameras for localization purpose. Hence, many underwater localization methods are based on expensive navigation sensors
Externí odkaz:
https://doaj.org/article/666b88c4b0ae4694ae2de34fae8d6255
Publikováno v:
Applied optics. 61(29)
We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs relat
Publikováno v:
Unconventional Optical Imaging III.
Publikováno v:
Applied optics. 60(31)
In this paper, we propose what we believe is a new monocular depth estimation algorithm based on local estimation of defocus blur, an approach referred to as depth from defocus (DFD). Using a limited set of calibration images, we directly learn image
Publikováno v:
MVA 2021
MVA 2021, Jul 2021, VIRTUEL, Japan
HAL
MVA
MVA 2021, Jul 2021, VIRTUEL, Japan
HAL
MVA
Good quality reconstruction and comprehension of a scene rely on 3D estimation methods. The 3D information was usually obtained from images by stereo-photogrammetry, but deep learning has recently provided us with excellent results for monocular dept
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bd4d9fff49b92ab9ef7788f2f56fdac
https://hal.archives-ouvertes.fr/hal-03365994/document
https://hal.archives-ouvertes.fr/hal-03365994/document
Publikováno v:
Journal of the Optical Society of America. A Optics, Image Science, and Vision
Journal of the Optical Society of America. A Optics, Image Science, and Vision, Optical Society of America, 2021, 38 (10), pp.1489. ⟨10.1364/josaa.424621⟩
Journal of the Optical Society of America. A Optics, Image Science, and Vision, 2021, 38 (10), pp.1489. ⟨10.1364/josaa.424621⟩
Journal of the Optical Society of America. A Optics, Image Science, and Vision, Optical Society of America, 2021, 38 (10), pp.1489. ⟨10.1364/josaa.424621⟩
Journal of the Optical Society of America. A Optics, Image Science, and Vision, 2021, 38 (10), pp.1489. ⟨10.1364/josaa.424621⟩
International audience; In this paper we present a generic performance model able to evaluate the accuracy of depth estimation using depth from defocus. This model only requires the sensor PSF at a given depth to evaluate the theoretical accuracy of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8957732221eb51a4d7b47390fb17ab0f
https://hal.archives-ouvertes.fr/hal-03378595
https://hal.archives-ouvertes.fr/hal-03378595
Autor:
Rémy Leroy, Bertrand Le Saux, Marcela Pinheiro de Carvalho, Pauline Trouvé-Peloux, Frédéric Champagnat
Publikováno v:
RFIAP 2020
RFIAP 2020, Jun 2020, VANNES, France
HAL
RFIAP 2020, Jun 2020, VANNES, France
HAL
International audience; Estimer la géométrie 3D d’une scène est crucial pour la reconstruction et la compréhension de celle-ci. L’information 3D est obtenue traditionnellement par stéréovision, et plus récemment par apprentissage profond a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::53ac3842a42076c9c726f19c61729e7e
https://hal.archives-ouvertes.fr/hal-02906388/file/DTIS20137.1595258673.pdf
https://hal.archives-ouvertes.fr/hal-02906388/file/DTIS20137.1595258673.pdf
Publikováno v:
Unconventional Optical Imaging II.
In this paper we propose a new concept for a compact 3D sensor dedicated to industrial inspection, combining chromatic Depth From Defocus (DFD) and structured illumination. Depth is estimated from a single image using local estimation of the defocus
Autor:
Marcela Carvalho, Pauline Trouvé-Peloux, Frédéric Champagnat, Bertrand Le Saux, Andrés Almansa
Publikováno v:
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters, IEEE-Institute of Electrical and Electronics Engineers, 2019, ⟨10.1109/LGRS.2019.2947783⟩
IEEE Geoscience and Remote Sensing Letters, IEEE-Institute of Electrical and Electronics Engineers, 2019, ⟨10.1109/LGRS.2019.2947783⟩
Aerial or satellite imagery is a great source for land surface analysis, which might yield land use maps or elevation models. In this investigation, we present a neural network framework for learning semantics and local height together. We show how t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::299910689dc57393e7c856c839fe9d72
https://hal.archives-ouvertes.fr/hal-02386074v2/file/DTIS19229.1580910909_postprint.pdf
https://hal.archives-ouvertes.fr/hal-02386074v2/file/DTIS19229.1580910909_postprint.pdf