Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Paul-Henry Leemann"'
Publikováno v:
Izvestiya: Mathematics. 85:1128-1145
The aim of this paper is to describe the structure of the finitely generated subgroups of a family of branch groups, which includes the first Grigorchuk group and the Gupta-Sidki 3-group. This description is made via the notion of block subgroup. We
Конечно порожденные подгруппы ветвящихся групп и подпрямые произведения минимально бесконечных групп
Publikováno v:
Известия Российской академии наук. Серия математическая. 85:104-125
Целью работы является описание структуры конечно порожденных подгрупп некоторого семейства ветвящихся групп, содержащего группу Григ
Autor:
Paul-Henry Leemann, Mikael De la Salle
Publikováno v:
Journal of Algebraic Combinatorics
Journal of Algebraic Combinatorics, 2020, ⟨10.1007/s10801-020-00956-1⟩
Journal of Algebraic Combinatorics, Springer Verlag, 2020, ⟨10.1007/s10801-020-00956-1⟩
Journal of Algebraic Combinatorics, 2020, ⟨10.1007/s10801-020-00956-1⟩
Journal of Algebraic Combinatorics, Springer Verlag, 2020, ⟨10.1007/s10801-020-00956-1⟩
We show that every finitely generated group G with an element of order at least $(5rank(G))^{12}$ admits a locally finite directed Cayley graph with automorphism group equal to G. If moreover G is not generalized dihedral, then the above Cayley direc
The group property FW stands in-between the celebrated Kazdhan's property (T) and Serre's property FA. Among many characterizations, it might be defined, for finitely generated groups, as having all Schreier graphs one-ended. It follows from the work
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dcbf9c3883f13fb09916c47a9c1a390d
Autor:
Paul-Henry Leemann, Mikael de la Salle
We characterize the finitely generated groups that admit a Cayley graph whose only automorphisms are the translations, confirming a conjecture by Watkins from 1976. The proof relies on random walk techniques. As a consequence, every finitely generate
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d0102debbebfc865cc7b06db2e046c3
https://hal.archives-ouvertes.fr/hal-02967126
https://hal.archives-ouvertes.fr/hal-02967126
Autor:
Paul-Henry Leemann
Publikováno v:
Paul-Henry Leemann
Le sujet de cette thèse est la théorie géométrique et combinatoire des groupes - le lien entre les propriétés des groupes et celles des objets géométriques sur lesquels ils agissent. Plus précisément, nous nous intéressons à la structure
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::988047f31bdef3325cf820fdcf57b1b6
https://archive-ouverte.unige.ch/unige:87976
https://archive-ouverte.unige.ch/unige:87976
Autor:
Paul-Henry Leemann
Publikováno v:
International Journal of Algebra and Computation
We give a characterization of isomorphisms between Schreier graphs in terms of the groups, subgroups and generating systems. This characterization may be thought as a graph analog of Mostow's rigidity theorem for hyperbolic manifolds. This allows us
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4576856bb3417c2ae905a25d00b1055f
http://arxiv.org/abs/1505.03433
http://arxiv.org/abs/1505.03433
Publikováno v:
Journal of Physics A: Mathematican and Theoretical
We describe the infinite family of spider-web graphs $S_{k,M,N }$, $k \geq 2$, $M \geq 1$ and $N \geq 0$, studied in physical literature as tensor products of well-known de Brujin graphs $B_{k,N}$ and cyclic graphs $C_M$ and show that these graphs ar