Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Paul Magron"'
Publikováno v:
Signal Processing
Signal Processing, 2023
Signal Processing, 2023
International audience; Audio inpainting, i.e., the task of restoring missing or occluded audio signal samples, usually relies on sparse representations or autoregressive modeling. In this paper, we propose to structure the spectrogram with nonnegati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abdd17cbe00e59cc0ffc3d447feea709
https://inria.hal.science/hal-03708613v2/document
https://inria.hal.science/hal-03708613v2/document
Autor:
Paul Magron, Cedric Fevotte
Publikováno v:
IEEE Signal Processing Letters
IEEE Signal Processing Letters, 2022, ⟨10.1109/LSP.2022.3187368⟩
IEEE Signal Processing Letters, 2022, ⟨10.1109/LSP.2022.3187368⟩
International audience; This paper tackles the problem of decomposing binary data using matrix factorization. We consider the family of mean-parametrized Bernoulli models, a class of generative models that are well suited for modeling binary data and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1d36bcd51dedeb2500d36870422a8c36
https://inria.hal.science/hal-03647772/file/main.pdf
https://inria.hal.science/hal-03647772/file/main.pdf
Publikováno v:
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun 2021, Toronto, Canada
ICASSP
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun 2021, Toronto, Canada
ICASSP
International audience; Time-frequency audio source separation is usually achieved by estimating the short-time Fourier transform (STFT) magnitude of each source, and then applying a phase recovery algorithm to retrieve time-domain signals. In partic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c205767866ab2d87d1884271095485b0
https://hal.science/hal-03049800
https://hal.science/hal-03049800
Publikováno v:
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing, IEEE, 2021, 15 (1)
IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (1)
IEEE Journal of Selected Topics in Signal Processing, IEEE, 2021, 15 (1)
IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (1)
Phase retrieval (PR) aims to recover a signal from the magnitudes of a set of inner products. This problem arises in many audio signal processing applications which operate on a short-time Fourier transform magnitude or power spectrogram, and discard
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e94fb16dcf4670cc193f3cdad37748dc
https://hal.archives-ouvertes.fr/hal-03050635/document
https://hal.archives-ouvertes.fr/hal-03050635/document
Autor:
Paul Magron, Tuomas Virtanen
Publikováno v:
IEEE Signal Processing Letters
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2020, 27, pp.306-310. ⟨10.1109/LSP.2020.2970310⟩
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2020, 27, pp.306-310. ⟨10.1109/LSP.2020.2970310⟩
International audience; Audio source separation is usually achieved by estimating the short-time Fourier transform (STFT) magnitude of each source, and then applying a spectrogram inversion algorithm to retrieve time-domain signals. In particular, th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6187f4a2b86430709bbb3467e6a21cec
https://hal.inria.fr/hal-03132170/file/Online_MISI.pdf
https://hal.inria.fr/hal-03132170/file/Online_MISI.pdf
Autor:
Cédric Févotte, Paul Magron
Publikováno v:
IEEE International Conference on Acoustics, Speech and Signal Processing
IEEE International Conference on Acoustics, Speech and Signal Processing, Jun 2021, Toronto, Canada
ICASSP
IEEE International Conference on Acoustics, Speech and Signal Processing, Jun 2021, Toronto, Canada
ICASSP
International audience; State-of-the-art music recommendation systems are based on collaborative filtering, which predicts a user's interest from his listening habits and similarities with other users' profiles. These approaches are agnostic to the s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9a016a5b718215e1a70bdb8ccf8501d
Publikováno v:
IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events Workshops (DCASE 2019)
IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events Workshops (DCASE 2019), Oct 2019, New York, United States
Tampere University
IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events Workshops (DCASE 2019), Oct 2019, New York, United States
Tampere University
A sound event detection (SED) method typically takes as an input a sequence of audio frames and predicts the activities of sound events in each frame. In real-life recordings, the sound events exhibit some temporal structure: for instance, a "car hor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::710c9b3e7031920af26882172b20b4d8
http://arxiv.org/abs/1907.08506
http://arxiv.org/abs/1907.08506
Autor:
Paul Magron, Tuomas Virtanen
This paper introduces a phase-aware probabilistic model for audio source separation. Classical source models in the short-term Fourier transform domain use circularly-symmetric Gaussian or Poisson random variables. This is equivalent to assuming that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::153623aa4609376eda1aefc9213b9149
https://hal.science/hal-01884302
https://hal.science/hal-01884302
Publikováno v:
International Workshop on Acoustic Signal Enhancement
International Workshop on Acoustic Signal Enhancement, Sep 2018, Tokyo, Japan
IWAENC
2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC)
International Workshop on Acoustic Signal Enhancement, Sep 2018, Tokyo, Japan
IWAENC
2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC)
International audience; Harmonic/percussive source separation (HPSS) consists in separating the pitched instruments from the percussive parts in a music mixture. In this paper, we propose to apply the recently introduced Masker-Denoiser with twin net
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dfc4b662cd810553dbef4e2e8141c807
https://hal.archives-ouvertes.fr/hal-01812225v2/document
https://hal.archives-ouvertes.fr/hal-01812225v2/document
Publikováno v:
INTERSPEECH
Tampere University
Interspeech 2018
Interspeech
Interspeech, Sep 2018, Hyderabad, India
Tampere University
Interspeech 2018
Interspeech
Interspeech, Sep 2018, Hyderabad, India
International audience; State-of-the-art methods for monaural singing voice separation consist in estimating the magnitude spectrum of the voice in the short-term Fourier transform (STFT) domain by means of deep neural networks (DNNs). The resulting