Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Paul Hagelstein"'
Publikováno v:
Bulletin of the London Mathematical Society.
Autor:
Paul Hagelstein, Giorgi Oniani
Publikováno v:
Journal of Mathematical Analysis and Applications. 523:127083
Autor:
Paul Hagelstein, Alex Stokolos
Publikováno v:
Collectanea Mathematica.
Autor:
Ioannis Parissis, Paul Hagelstein
Publikováno v:
Studia Mathematica. 251:317-326
Publikováno v:
The Journal of Wealth Management. 22:41-48
In this article, the authors consider historical real returns of tax-exempt portfolios consisting of equities and short-term bonds over 90 different 30-year time periods from 1900 to 2018, in which fixed real contributions were made to the portfolios
Let $\mathcal{B}$ be a collection of rectangular parallelepipeds in $\mathbb{R}^3$ whose sides are parallel to the coordinate axes and such that $\mathcal{B}$ contains parallelepipeds with side lengths of the form $s, \frac{2^N}{s} , t $, where $s, t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db5eee88d6e4ccff5e7358f9becd2859
http://arxiv.org/abs/2101.08736
http://arxiv.org/abs/2101.08736
Autor:
Paul Hagelstein, Ioannis Parissis
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Publicacions Matemàtiques; Vol. 62, Núm. 1 (2018); p. 133-159
Recercat. Dipósit de la Recerca de Catalunya
instname
Publ. Mat. 62, no. 1 (2018), 133-159
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Publicacions Matemàtiques; Vol. 62, Núm. 1 (2018); p. 133-159
Recercat. Dipósit de la Recerca de Catalunya
instname
Publ. Mat. 62, no. 1 (2018), 133-159
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Let $\mathsf M_{\mathsf S}$ denote the strong maximal operator on $\mathbb R^n$ and let $w$ be a non-negative, locally integrable function. For $\alpha\in(0,1)$ we define the weighted sharp Tauberian constant $\mathsf C_{\mathsf S}$ associated with $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::829bf91fce74c848be285499670ef143
http://hdl.handle.net/2072/417218
http://hdl.handle.net/2072/417218
Autor:
Paul Hagelstein, John M. Davis
Publikováno v:
Journal of Mathematical Analysis and Applications. 505:125574
The Gibbs phenomena associated to partial sums of Fourier series are now well understood. In this paper, we show that Gibbs phenomena also occur for expansions of functions in terms of members of one of several general classes of orthogonal polynomia
Publikováno v:
SIAM Journal on Control and Optimization. 56:148-157
In this paper we consider the issue of robust stability of a linear delayed feedback control (DFC) mechanism. In particular we consider a DFC for stabilizing fixed points of a smooth function $f: \mathbb{R}^m \rightarrow \mathbb{R}^m$ of the form $x(
Autor:
Ioannis Parissis, Paul Hagelstein
Publikováno v:
Fundamenta Mathematicae. 243:169-177
This paper provides a necessary and sufficient condition on Tauberian constants associated to a centered translation invariant differentiation basis so that the basis is a density basis. More precisely, given $x \in \mathbb{R}^n$, let $\mathcal{B} =