Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Paul Gérard Gbetkom"'
Autor:
Ismaguil Hanadé Houmma, Sébastien Gadal, Loubna El Mansouri, Maman Garba, Paul Gérard Gbetkom, Mansour Badamassi Mamane Barkawi, Rachid Hadria
Publikováno v:
Geomatics, Natural Hazards & Risk, Vol 14, Iss 1 (2023)
AbstractThis manuscript aims to develop a new multivariate composite index for monitoring agricultural drought. To achieve this, the AVHRR, VIIRS, CHIRPS data series over a period of 40 years, rainfall and crop yield data as references were used. Var
Externí odkaz:
https://doaj.org/article/7fdc9d851f6f43f0884d6df21206021e
Autor:
Alfred Homère Ngandam Mfondoum, Pauline Wokwenmendam Nguet, Jean Valery Mefire Mfondoum, Mesmin Tchindjang, Sofia Hakdaoui, Ryan Cooper, Paul Gérard Gbetkom, Joseph Penaye, Ateba Bekoa, Cyriel Moudioh
Publikováno v:
Geoenvironmental Disasters, Vol 8, Iss 1, Pp 1-26 (2021)
Abstract Background NASA’s developers recently proposed the Sudden Landslide Identification Product (SLIP) and Detecting Real-Time Increased Precipitation (DRIP) algorithms. This double method uses Landsat 8 satellite images and daily rainfall data
Externí odkaz:
https://doaj.org/article/74a06cd2e04743d08dbd6e0fecc5d023
Publikováno v:
SN Computer Science
SN Computer Science, 2023, 4 (3), pp.237. ⟨10.1007/s42979-022-01651-7⟩
SN Computer Science, 2023, 4 (3), pp.237. ⟨10.1007/s42979-022-01651-7⟩
International audience; This article aims to propose a model on the soil degradation risk along the Cameroonian shores of Lake Chad based on the statistical analysis of spectral indexes of Sentinel 2A satellite images. A total of four vegetation inde
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4964dc56bb0479a406a7a1b561e7ed5b
https://hal.science/hal-04019713/file/Gadal_Gbetkom_Mfondoum.pdf
https://hal.science/hal-04019713/file/Gadal_Gbetkom_Mfondoum.pdf
Autor:
Ateba Bekoa, Joseph Penaye, Mesmin Tchindjang, Ryan Cooper, Pauline Wokwenmendam Nguet, Jean Valery Mefire Mfondoum, Paul Gérard Gbetkom, Cyriel Moudioh, Alfred Homère Ngandam Mfondoum, Sofia Hakdaoui
Publikováno v:
Geoenvironmental Disasters, Vol 8, Iss 1, Pp 1-26 (2021)
Background NASA’s developers recently proposed the Sudden Landslide Identification Product (SLIP) and Detecting Real-Time Increased Precipitation (DRIP) algorithms. This double method uses Landsat 8 satellite images and daily rainfall data for a re
Autor:
Paul Gérard Gbetkom, Jean-François Crétaux, Michel Tchilibou, Alice Carret, Manon Delhoume, Muriel Bergé-Nguyen, Florence Sylvestre
Publikováno v:
The Science of the total environment. 857(Pt 2)
Monitoring the evolution of the Sahelian environment is a major challenge because the great Sahelian droughts, marked by significant environmental consequences and social impacts, contributed, for example, to the drying up of Lake Chad. We combined r
Autor:
Alfred Homère Ngandam Mfondoum, Marthe Ntengo, Pauline Ngùet Wokwenmendam, Roland Bruno Ngouyamsa Mfondoum, Paul Gérard Gbetkom
Publikováno v:
Journal of Geographic Information System. 11:138-165
Oil Palm (Elaeis guineensis Jacq.) has recorded a boom production the last decades and its main productive zone is inside the tropics that meet the best biophysical conditions. Investors as well as geospatial practitioners are increasingly interested
Autor:
ALFRED HOMERE NGANDAM MFONDOUM, Pauline Wokwenmendam Nguet, Jean Valery Mefire Mfondoum, Mesmin Tchindjang, Sofia Hakdaoui, Ryan Cooper, Paul Gérard Gbetkom, Joseph Penaye, Ateba Bekoa, Cyriel Moudioh
Background – NASA’s developers recently proposed the Sudden Landslide Identification Product (SLIP) and Detecting Real-Time Increased Precipitation (DRIP) algorithms. This method uses the Landsat 8 satellite images and daily rainfall recordings f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c9b34f5cc0dde5e089c9a29d93880c4
https://doi.org/10.21203/rs.3.rs-19292/v4
https://doi.org/10.21203/rs.3.rs-19292/v4
Publikováno v:
GISTAM
Publikováno v:
Professional Geographer
Professional Geographer, 2020, 72 (3), pp.421-432. ⟨10.1080/00330124.2020.1730197⟩
Professional Geographer, Taylor & Francis (Routledge), 2020, 72 (3), pp.421-432. ⟨10.1080/00330124.2020.1730197⟩
Professional Geographer, 2020, 72 (3), pp.421-432. ⟨10.1080/00330124.2020.1730197⟩
Professional Geographer, Taylor & Francis (Routledge), 2020, 72 (3), pp.421-432. ⟨10.1080/00330124.2020.1730197⟩
In this study, we propose a new remote sensing–based drought index, the agricultural drought condition index (ADCI), for agricultural drought monitoring in the agricultural area of Niger. It is def...
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a49d720c0f865de914b1bb0ec2543466
https://hal.science/hal-03130785
https://hal.science/hal-03130785
Autor:
ALFRED HOMERE NGANDAM MFONDOUM, Pauline Wokwenmendam Nguet, Jean Valery Mefire Mfondoum, Mesmin Tchindjang, Sofia Hakdaoui, Ryan Cooper, Paul Gérard Gbetkom, Joseph Penaye, Ateba Bekoa, Cyriel Moudioh
Background – The SLIP and DRIP algorithms recently developed correlate Landsat 8 images and local daily precipitation records to map and time rainfall-triggered landslides. In many areas recently affected by that geohazard in west-Cameroon’s high
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::18402a77ce5ad7542b3594c808bb5335
https://doi.org/10.21203/rs.3.rs-19292/v1
https://doi.org/10.21203/rs.3.rs-19292/v1