Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Paul F. X. Müller"'
Publikováno v:
Revista Matemática Iberoamericana. 38:1335-1348
Autor:
Paul F. X. Müller
This book presents the probabilistic methods around Hardy martingales for an audience interested in applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Maurey, Pisier, and Varopoulos, it discusses in det
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::df112a0a0253eec1c81845d2133da6ed
https://doi.org/10.1017/9781108976015
https://doi.org/10.1017/9781108976015
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 171:421-448
In this paper we consider the following problem: letXk, be a Banach space with a normalised basis (e(k, j))j, whose biorthogonals are denoted by${(e_{(k,j)}^*)_j}$, for$k\in\N$, let$Z=\ell^\infty(X_k:k\kin\N)$be theirl∞-sum, and let$T:Z\to Z$be a b
Autor:
Paul F. X. Müller
This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it dis
Autor:
Paul F. X. Müller, Stefan Müller
Publikováno v:
Revista Matemática Iberoamericana. 32:1137-1162
We prove that directional wavelet projections and Riesz transforms are related by interpolatory estimates. The exponents of interpolation depend on the Holder estimates of the wavelet system. This paper complements and continues previous work on Haar
We introduce the concept of strategically reproducible bases in Banach spaces and show that operators which have large diagonal with respect to strategically reproducible bases are factors of the identity. We give several examples of classical Banach
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5171cb64382f68636bb37db04d883dee
http://arxiv.org/abs/1809.09423
http://arxiv.org/abs/1809.09423
Autor:
Katharina Riegler, Paul F. X. Müller
Publikováno v:
Ark. Mat. 58, no. 1 (2020), 161-178
In [9] Anderson’s conjecture was proven by comparing values of Bloch functions with the variation of the function. We extend that result on Bloch functions from two to arbitrary dimension and prove that ¶ \[ \int \limits_{[0, x]} \lvert \nabla b(\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1341e5f089b1ec2fbec677945fd4e4bd
Autor:
Richard Lechner, Paul F. X. Müller
Publikováno v:
The Quarterly Journal of Mathematics. 66:1069-1101
We prove that for any operator $T$ on bi--parameter BMO the identity factors through $T$ or $I - T$. Bourgain's localization method provides the conceptual framework of our proof. It consists in replacing the factorization problem on the non--separab
We prove the analogue of the Martingale Convergence Theorem for polynomial spline sequences. Given a natural number k and a sequence (ti) of knots in [0, 1] with multiplicity ≤ k − 1, we let Pn be the orthogonal projection onto the space of splin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d1d815147875f21022482aefb442c1ed
http://arxiv.org/abs/1711.01859
http://arxiv.org/abs/1711.01859
Autor:
Paul F. X. Müller
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 157:189-207
We prove Davis and Garsia Inequalities for dyadic perturbations of Hardy martingales and show that those inequalities play a substantial role in the proof of Bourgain's [1] embedding L1 ↪ L1/H10. This paper continues [17] on Davis and Garsia Inequa