Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Paul Banda"'
Autor:
Banda, Paul
Tez (yüksek lisans) -- Ondokuz Mayıs Üniversitesi, 2016 Libra Kayıt No: 92084 …
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______9773::7f70cc710c64438c4708ff15518bf24b
http://libra.omu.edu.tr/tezler/92084.pdf
http://libra.omu.edu.tr/tezler/92084.pdf
Autor:
Miguel Flores-Gatica, Héctor Castañeda-Aponte, Mónica Rebeca Gil-Garzon, Liliana Monserrath Mora-Galvez, Martin Paul Banda-Magaña, Jesús Antonio Jáuregui-Jáuregui, Mario A. Torres-Acosta, Karla Mayolo-Deloisa, Cuauhtemoc Licona-Cassani
Publikováno v:
AMB Express, Vol 11, Iss 1, Pp 1-12 (2021)
Abstract Given its biocompatibility, rheological, and physiological properties, hyaluronic acid (HA) has become a biomaterial of increasing interest with multiple applications in medicine and cosmetics. In recent decades, microbial fermentations have
Externí odkaz:
https://doaj.org/article/41c6b3de0aa14580b5a011a2a3da4b2a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hong Wei, Yixin Huang, Peter J. Santiago, Khachik E. Labachyan, Sasha Ronaghi, Martin Paul Banda Magana, Yen-Hsiang Huang, Sunny C. Jiang, Allon I. Hochbaum, Regina Ragan
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, vol 120, iss 7
Heavy metal contamination due to industrial and agricultural waste represents a growing threat to water supplies. Frequent and widespread monitoring for toxic metals in drinking and agricultural water sources is necessary to prevent their accumulatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c5af084434db124675a9184eeff6087
https://escholarship.org/uc/item/1p16f78x
https://escholarship.org/uc/item/1p16f78x
Publikováno v:
Proceedings of the International Conference on Evolving Cities.
Water management planning requires reliable and accurate water demand forecasting. Water demand prediction is affected by variables, such as climate, socio-economic, and demographic data. This paper investigates urban monthly average water demand pre
Autor:
Paul Banda
Publikováno v:
Journal of Policing, Intelligence and Counter Terrorism. 18:137-138
Publikováno v:
Computational Science – ICCS 2021 ISBN: 9783030779764
ICCS (5)
ICCS (5)
The problem of limited labelled data availability causes under-fitting, which negatively affects the development of accurate time series based prediction models. Two-hybrid deep neural network architectures, namely the CNN-BiLSTM and the Conv-BiLSTM,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c0c0704015f543752d652dfda6744c00
https://doi.org/10.1007/978-3-030-77977-1_20
https://doi.org/10.1007/978-3-030-77977-1_20
Publikováno v:
Computational Science – ICCS 2021 ISBN: 9783030779764
ICCS (5)
ICCS (5)
In this paper, a Conv-BiLSTM hybrid architecture is proposed to improve building energy consumption reconstruction of a new multi-functional building type. Experiments indicate that using the proposed hybrid architecture results in improved predictio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7091b129b2fb2f3a0fd305722ebdc4e6
https://doi.org/10.1007/978-3-030-77977-1_23
https://doi.org/10.1007/978-3-030-77977-1_23
Publikováno v:
Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate ISBN: 9789811588914
Leisure centres are multifunctional buildings that have irregular energy consumption patterns and consume more energy compared to most building types. However, they have little representation in building performance energy prediction literature. This
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a152bc596f8ca7c314b9788a66e7256c
https://doi.org/10.1007/978-981-15-8892-1_118
https://doi.org/10.1007/978-981-15-8892-1_118
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030227333
ICCS (1)
ICCS (1)
Demand for energy is ever growing. Accurate prediction of energy demand of large buildings becomes essential for property managers to operate these facilitates more efficient and greener. Various temporal modelling provides a reliable yet straightfor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::14f1d5cfdb59f96b55856781cc5fed23
https://doi.org/10.1007/978-3-030-22734-0_9
https://doi.org/10.1007/978-3-030-22734-0_9