Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Pau Figuera"'
Publikováno v:
Mathematics, Vol 12, Iss 15, p 2349 (2024)
Clustering validation is applied to evaluate the quality of classifications. This step is crucial for unsupervised machine learning. A plethora of methods exist for this purpose; however, a common drawback is that statistical inference is not possibl
Externí odkaz:
https://doaj.org/article/4704f7542d564ab7be9f954f362ba0fc
Autor:
Pau Figuera, Pablo García Bringas
Publikováno v:
Technologies, Vol 12, Iss 1, p 5 (2024)
This manuscript provides a comprehensive exploration of Probabilistic latent semantic analysis (PLSA), highlighting its strengths, drawbacks, and challenges. The PLSA, originally a tool for information retrieval, provides a probabilistic sense for a
Externí odkaz:
https://doaj.org/article/1e9f73becbba407899aae201ea53a285
Publikováno v:
Journal of Statistical Theory and Applications (JSTA), Vol 19, Iss 2 (2020)
The Probabilistic Latent Semantic Analysis has been related with the Singular Value Decomposition. Several problems occur when this comparative is done. Data class restrictions and the existence of several local optima mask the relation, being a form
Externí odkaz:
https://doaj.org/article/87d0965e934d426abff36d18b7341879
Autor:
Yago Bea, Pau Figueras
Publikováno v:
Journal of High Energy Physics, Vol 2024, Iss 11, Pp 1-37 (2024)
Abstract In recent years the equations of relativistic first-order viscous hydrodynamics, that is, the relativistic version of Navier-Stokes, have been shown to be well posed and causal under appropriate field redefinitions, also known as hydrodynami
Externí odkaz:
https://doaj.org/article/57f9abfaff5d40f1aab56fcf78000b51
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031154706
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dbe4e326a1f949aafbd6c3513e7119c4
https://doi.org/10.1007/978-3-031-15471-3_17
https://doi.org/10.1007/978-3-031-15471-3_17
Autor:
Pablo García Bringas, Pau Figuera
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030862701
HAIS
HAIS
In this manuscript, we derive a non-parametric version of the Fisher kernel. We obtain this original result from the Non-negative Matrix Factorization with the Kullback-Leibler divergence. By imposing suitable normalization conditions on the obtained
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::80e22ab8c4d568ce9a87a99a0b3d8a1f
https://doi.org/10.1007/978-3-030-86271-8_38
https://doi.org/10.1007/978-3-030-86271-8_38
Publikováno v:
Journal of Statistical Theory and Applications (JSTA), Vol 19, Iss 2 (2020)
The Probabilistic Latent Semantic Analysis has been related with the Singular Value Decomposition. Several problems occur when this comparative is done. Data class restrictions and the existence of several local optima mask the relation, being a form
Publikováno v:
Journal of High Energy Physics, Vol 2022, Iss 8, Pp 1-26 (2022)
Abstract Motivated by the physics of the quark-gluon plasma created in heavy-ion collision experiments, we use holography to study the regime of applicability of various theories of relativistic viscous hydrodynamics. Using the microscopic descriptio
Externí odkaz:
https://doaj.org/article/bbe62ce6412e41cdb39e726517d74a05
Publikováno v:
Journal of Statistical Theory and Applications; June 2020, Vol. 19 Issue: 2 p286-296, 11p
Publikováno v:
Journal of High Energy Physics, Vol 2022, Iss 3, Pp 1-29 (2022)
Abstract We study collisions of boosted rotating black holes in D = 6 and 7 spacetime dimensions with a non-zero impact parameter. We find that there exists an open set of initial conditions such that the intermediate state of the collision is a blac
Externí odkaz:
https://doaj.org/article/3d488c6c88ee4028b87e3664cdd64cd4