Zobrazeno 1 - 10
of 122
pro vyhledávání: '"Pattrawut Chansangiam"'
Publikováno v:
Electronic Research Archive, Vol 32, Iss 4, Pp 2789-2804 (2024)
We have considered a generalized Sylvester-transpose matrix equation $ AXB + CX^TD = E, $ where $ A, B, C, D, $ and $ E $ are given rectangular matrices over a generalized quaternion skew-field, and $ X $ is an unknown matrix. We have applied certain
Externí odkaz:
https://doaj.org/article/c3394ac65d0e4c00b6b2fbe111713877
Publikováno v:
AIMS Mathematics, Vol 9, Iss 5, Pp 11452-11467 (2024)
We characterized weighted spectral geometric means (SGM) of positive definite matrices in terms of certain matrix equations involving metric geometric means (MGM) $ \sharp $ and semi-tensor products $ \ltimes $. Indeed, for each real number $ t $ and
Externí odkaz:
https://doaj.org/article/c93bba488f184ebcb25db788ed3e62ea
Autor:
Arnon Ploymukda, Pattrawut Chansangiam
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 26153-26167 (2023)
We extend the notion of classical metric geometric mean (MGM) for positive definite matrices of the same dimension to those of arbitrary dimensions, so that usual matrix products are replaced by semi-tensor products. When the weights are arbitrary re
Externí odkaz:
https://doaj.org/article/fd1e42f99abf460a819a4f610ae7d4fc
Autor:
Pattrawut Chansangiam, Arnon Ploymukda
Publikováno v:
AIMS Mathematics, Vol 8, Iss 10, Pp 23519-23533 (2023)
We investigate the Riccati matrix equation $ X A^{-1} X = B $ in which the conventional matrix products are generalized to the semi-tensor products $ \ltimes $. When $ A $ and $ B $ are positive definite matrices satisfying the factor-dimension condi
Externí odkaz:
https://doaj.org/article/22fcb1d884534e78b3b4674a98c3b224
Publikováno v:
AIMS Mathematics, Vol 8, Iss 5, Pp 11781-11798 (2023)
Consider a linear system Ax=b where the coefficient matrix A is rectangular and of full-column rank. We propose an iterative algorithm for solving this linear system, based on gradient-descent optimization technique, aiming to produce a sequence of w
Externí odkaz:
https://doaj.org/article/1d00742ef064475095746d8cf8ffd5a4
Publikováno v:
AIMS Mathematics, Vol 7, Iss 5, Pp 8471-8490 (2022)
We consider the two-dimensional space-time fractional differential equation with the Caputo's time derivative and the Riemann-Liouville space derivatives on bounded domains. The equation is subjected to the zero Dirichlet boundary condition and the z
Externí odkaz:
https://doaj.org/article/b29b1351e6c64ce392054fca0561eb93
Publikováno v:
AIMS Mathematics, Vol 7, Iss 4, Pp 5386-5407 (2022)
We develop an effective algorithm to find a well-approximate solution of a generalized Sylvester-transpose matrix equation where all coefficient matrices and an unknown matrix are rectangular. The algorithm aims to construct a finite sequence of appr
Externí odkaz:
https://doaj.org/article/f9568046155f43dc80ddc327bf5d0c62
Publikováno v:
AIMS Mathematics, Vol 6, Iss 8, Pp 8477-8496 (2021)
Consider a generalized Sylvester-transpose matrix equation with rectangular coefficient matrices. Based on gradients and hierarchical identification principle, we derive an iterative algorithm to produce a sequence of approximated solutions with a re
Externí odkaz:
https://doaj.org/article/2e0bee85a4dc4656bee9c34f96dcdf36
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-18 (2021)
Abstract This paper proposes an effective gradient-descent iterative algorithm for solving a generalized Sylvester-transpose equation with rectangular matrix coefficients. The algorithm is applicable for the equation and its interesting special cases
Externí odkaz:
https://doaj.org/article/c2a445bc1b4a46c2b20bb3ca5938e44b
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-17 (2021)
Abstract We derive an iterative procedure for solving a generalized Sylvester matrix equation A X B + C X D = E $AXB+CXD = E$ , where A , B , C , D , E $A,B,C,D,E$ are conforming rectangular matrices. Our algorithm is based on gradients and hierarchi
Externí odkaz:
https://doaj.org/article/1a80bfb6b0a5441c8c62a04db494d348