Zobrazeno 1 - 1
of 1
pro vyhledávání: '"Patrick Amstad"'
Publikováno v:
Volume 10D: Turbomachinery — Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification; Turbomachinery General Interest; Unsteady Flows in Turbomachinery.
This paper presents a complete and general machine-learning assisted optimization framework for the Generalized k-ω (GEKO) turbulence model based on experimental measurements. The optimization framework is applied to the use case of a turbocharger r