Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Patricia Pellicer-Covarrubias"'
Publikováno v:
Revista Integración, Vol 34, Iss 1, Pp 109-123 (2016)
El hiperespacio de arcos de un continuo fue definido por Sam B. Nadler, Jr. en 1978. Posteriormente, A. Soto estudió en 1999 el hiperespacio de arcos y singulares de un continuo, el cual en este artículo será denotado por M(X). En este trabajo int
Externí odkaz:
https://doaj.org/article/b472ce89b3ca4ce793d241ab64631aa2
Publikováno v:
Glasnik matematički
Volume 55
Issue 1
Volume 55
Issue 1
In this paper we study the hyperspace of all nonempty closed totally disconnected subsets of a space, equipped with the Vietoris topology. We show results of compactness, connectedness and local connectedness for this hyperspace. We also include a st
Publikováno v:
Mathematica Slovaca. 68:431-450
The symbol 𝓢 c (X) denotes the hyperspace of all nontrivial convergent sequences in a Hausdorff space X. This hyperspace is endowed with the Vietoris topology. In the current paper, we compare the cellularity, the tightness, the extent, the disper
Publikováno v:
Topology and its Applications. 235:167-184
In this paper we consider the hyperspace of arcs and singletons of a continuum and we study properties of an end point function and a midpoint function defined in such hyperspace. We investigate conditions under which such functions are continuous, o
Publikováno v:
Topology and its Applications. 229:85-105
The symbol S c ( X ) denotes the hyperspace of all nontrivial convergent sequences in a Hausdorff space X. This hyperspace is endowed with the Vietoris topology. For a given mapping between Hausdorff spaces f : X → Y , define the induced mapping S
Publikováno v:
Revista Integración, Vol 34, Iss 1, Pp 109-123 (2016)
Revista Integración, Vol 34, Iss 1 (2016)
Universidad Nacional Autónoma de México
UNAM
Redalyc-UNAM
Revista Integración (Colombia) Num.1 Vol.34
Revista Integración, Vol 34, Iss 1 (2016)
Universidad Nacional Autónoma de México
UNAM
Redalyc-UNAM
Revista Integración (Colombia) Num.1 Vol.34
El hiperespacio de arcos de un continuo fue definido por Sam B. Nadler, Jr. en 1978. Posteriormente, A. Soto estudio en 1999 el hiperespacio de arcos y singulares de un continuo, el cual en este articulo sera denotado por M(X). En este trabajo introd
Publikováno v:
Topology and its Applications. 180:142-160
We study 1 2 -homogeneity of the n-fold hyperspace suspension of continua. We prove that if X is a decomposable continuum and its n-fold hyperspace suspension is 1 2 -homogeneous, then X must be continuum chainable. We also characterize 1 2 -homogene
Publikováno v:
Topology and its Applications. 161:58-72
A space is said to be 1 2 -homogeneous provided that there are exactly two orbits for the action of the group of homeomorphisms of the space onto itself. Certain conditions on a continuum X are known under which the suspension over X is 1 2 -homogene
Publikováno v:
Topology and its Applications. 160:1816-1828
H. Hosokawa introduced the concept of a strong size property as a generalization of a Whitney property. In this paper we determine whether some properties are either m -strong size properties, m -strong size-reversible properties or m -sequential str
Publikováno v:
Topology and its Applications. 160:930-936
A space is 1 n -homogeneous provided there are exactly n orbits for the action of the group of homeomorphisms of the space onto itself. In this paper we construct a family of continua { Σ n : n ⩾ 3 } such that each continuum Σ n is circle-like, 1