Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Patra Dhriti Sundar"'
Publikováno v:
Open Mathematics, Vol 21, Iss 1, Pp 173-187 (2023)
The prime objective of the approach is to give geometric classifications of kk-almost Ricci solitons associated with paracontact manifolds. Let M2n+1(φ,ξ,η,g){M}^{2n+1}\left(\varphi ,\xi ,\eta ,g) be a paracontact metric manifold, and if a KK-para
Externí odkaz:
https://doaj.org/article/dd931771cc97401292c67838f5586d88
We introduce new metric structures on a smooth manifold (called "weak" structures) that generalize the almost contact, Sasakian, cosymplectic, etc. metric structures $(\varphi,\xi,\eta,g)$ and allow us to take a fresh look at the classical theory. We
Externí odkaz:
http://arxiv.org/abs/2203.04597
In the present paper, we give some characterizations by considering $*$-Ricci soliton as a Kenmotsu metric. We prove that if a Kenmotsu manifold represents an almost $*$-Ricci soliton with the potential vector field $V$ is a Jacobi along the Reeb vec
Externí odkaz:
http://arxiv.org/abs/2101.01459
Many authors have studied Ricci solitons and their analogs within the framework of (almost) contact geometry. In this article, we thoroughly study the $(m,\rho)$-quasi-Einstein structure on a contact metric manifold. First, we prove that if a $K$-con
Externí odkaz:
http://arxiv.org/abs/2010.15150
In this paper we characterize the Einstein metrics in such broader classes of metrics as almost $\eta$-Ricci solitons and $\eta$-Ricci solitons on Kenmotsu manifolds, and generalize some results of other authors. First, we prove that a Kenmotsu metri
Externí odkaz:
http://arxiv.org/abs/2008.12497
Publikováno v:
In Differential Geometry and its Applications October 2023 90
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we have studied the critical point equation (shortly, CPE) within the frame-work of Kenmotsu and almost Kenmotsu manifold satisfying certain nullity conditions. First, we prove that a complete Kenmotsu metric satisfies the CPE is Einst
Externí odkaz:
http://arxiv.org/abs/1812.03422
Autor:
Ghosh, Amalendu, Patra, Dhriti Sundar
Publikováno v:
J. Korean Math. Soc. 55 (2018), No. 1, pp. 161-174
The aim of this article is to study the k-almost Ricci soliton and k-almost gradient Ricci soliton on contact metric manifold. First, we prove that if a compact K-contact metric is a k-almost gradient Ricci soliton then it is isometric to a unit sphe
Externí odkaz:
http://arxiv.org/abs/1801.04767
Autor:
Ghosh, Amalendu, Patra, Dhriti Sundar
Publikováno v:
Journal of Geometry 108, 185-194 (2017)
In this paper, we consider the CPE conjecture in the frame-work of $K$-contact and $(\kappa, \mu)$-contact manifolds. First, we prove that if a complete $K$-contact metric satisfies the CPE is Einstein and is isometric to a unit sphere $S^{2n+1}$. Ne
Externí odkaz:
http://arxiv.org/abs/1711.05935