Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Patrão, Mauro"'
Autor:
Patrão, Mauro, Sandoval, Ricardo
In this article, we study the dynamics of translations of an element of a semisimple Lie group $G$ acting on its maximal compact subgroup $K$. First, we extend to our context some classical results in the context of general flag manifolds, showing th
Externí odkaz:
http://arxiv.org/abs/2408.16114
Autor:
Patrão, Mauro, Sandoval, Ricardo
In this article, we use the Bruhat and Schubert cells to calculate the cellular homology of the maximal compact subgroup $K$ of a connected semisimple Lie group $G$ whose Lie algebra is a split real form. We lift to the maximal compact subgroup the p
Externí odkaz:
http://arxiv.org/abs/2408.16795
Autor:
Patrão, Mauro, Santos, Laércio dos
In this paper we study the action of semigroups with nonempty interior of noncompact connected semisimple Lie groups, with finite center, on their maximal compact connected subgroups. As main results we describe the set of transitivity of a control s
Externí odkaz:
http://arxiv.org/abs/2305.07674
Autor:
Seco, Lucas, Patrão, Mauro
We describe the inverse image of the Riemannian exponential map at a basepoint of a compact symmetric space as the disjoint union of so called focal orbits through a maximal torus. These are orbits of a subgroup of the isotropy group acting in the ta
Externí odkaz:
http://arxiv.org/abs/2204.11984
This article grew out of the urge to realize explicit examples of solutions for the Ricci flow as families of isometrically embedded submanifolds, together with its Gromov-Hausdorff collapses. To this aim, we consider the Ricci flow of invariant metr
Externí odkaz:
http://arxiv.org/abs/2107.11612
The Ricci flow was introduced by Hamilton and gained its importance through the years. Of special importance is the limiting behavior of the flow and its symmetry properties. Taking this into account, we present a novel normalization for the homogene
Externí odkaz:
http://arxiv.org/abs/2004.01511
Autor:
Patrão, Mauro
This article addresses the problem of computing the topological entropy of an application $\psi : G \to G$, where $G$ is a Lie group, given by some power $\psi(g) = g^k$, with $k$ a positive integer. When $G$ is commutative, $\psi$ is an endomorphism
Externí odkaz:
http://arxiv.org/abs/1909.08960
Autor:
Patrão, Mauro Moraes Alves
Publikováno v:
Repositório Institucional da UnBUniversidade de BrasíliaUNB.
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade, Programa de Pós-Graduação em Economia, 2017.
Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2017-03-16T14:00:24Z No. o
Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2017-03-16T14:00:24Z No. o
Externí odkaz:
http://repositorio.unb.br/handle/10482/23041
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Patrão, Mauro
In this paper, we determine the topological entropy $h(\phi)$ of a continuous endomorphism $\phi$ of a Lie group $G$. This computation is a classical topic in ergodic theory which seemed to have long been solved. But, when $G$ is noncompact, the well
Externí odkaz:
http://arxiv.org/abs/1711.02562