Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Patnaik, Manish"'
Autor:
Buciumas, Valentin, Patnaik, Manish M.
We describe the structure of the Whittaker or Gelfand-Graev module on a $n$-fold metaplectic cover of a $p$-adic group $G$ at both the Iwahori and spherical level. We express our answer in terms of the representation theory of a quantum group at a ro
Externí odkaz:
http://arxiv.org/abs/2211.03724
Autor:
Dutour, Mathieu, Patnaik, Manish M.
In this paper, we associate a family of infinite-rank pro-Euclidean lattices to elements of a formal loop group and a highest weight representation of the underlying affine Kac--Moody algebra. In the case that the element has a polynomial representat
Externí odkaz:
http://arxiv.org/abs/2203.08976
Autor:
Patnaik, Manish, Puskás, Anna
Publikováno v:
Duke Math. J. 168, no. 4 (2019), 553-653
Starting from some linear algebraic data (a Weyl-group invariant bilinear form) and some arithmetic data (a bilinear Steinberg symbol), we construct a cover of a Kac-Moody group generalizing the work of Matsumoto. Specializing our construction over n
Externí odkaz:
http://arxiv.org/abs/1703.05265
Autor:
Patnaik, Manish M., Puskás, Anna
We relate Iwahori-Whittaker functions on metaplectic covers to certain Demazure-Lusztig operators, the latter of which are built from a Weyl group action previously considered by G. Chinta and P. Gunnells. Using a certain combinatorial identity for t
Externí odkaz:
http://arxiv.org/abs/1509.01594
Autor:
Patnaik, Manish M.
We define unramified Whittaker functions on the p-adic points of an affine Kac-Moody group, and establish an analogue of the Casselman-Shalika formula for these functions.
Externí odkaz:
http://arxiv.org/abs/1407.8072
This paper is a continuation of a previous paper in which the first two authors have introduced the spherical Hecke algebra and the Satake isomorphism for an untwisted affine Kac-Moody group over a non-archimedian local field. In this paper we develo
Externí odkaz:
http://arxiv.org/abs/1403.0602
In this paper, we prove the entirety of loop group Eisenstein series induced from cusp forms on the underlying finite dimensional group, by demonstrating their absolute convergence on the full complex plane. This is quite in contrast to the finite-di
Externí odkaz:
http://arxiv.org/abs/1304.4913
In this paper we give an elementary proof of certain finiteness results about affine Kac-Moody groups over a local non-archimedian field K. Our results imply those proven earlier by Braverman-Kazhdan, Braverman-Finkelberg-Kazhdan and Gaussent-Roussea
Externí odkaz:
http://arxiv.org/abs/1212.6473
Publikováno v:
American Journal of Mathematics, 2017 Apr 01. 139(2), 461-512.
Externí odkaz:
https://www.jstor.org/stable/44508931
Autor:
Patnaik, Manish M.
Publikováno v:
American Journal of Mathematics, 2017 Feb 01. 139(1), 175-213.
Externí odkaz:
http://www.jstor.org/stable/24906287