Zobrazeno 1 - 10
of 299
pro vyhledávání: '"Patkós Balázs"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 4, Pp 1061-1074 (2022)
A subgraph G of H is singular if the vertices of G either have the same degree in H or have pairwise distinct degrees in H. The largest number of edges of a graph on n vertices that does not contain a singular copy of G is denoted by TS(n, G). Caro a
Externí odkaz:
https://doaj.org/article/8e44b12e9869402882a2328dce50e8b9
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 13, Iss 2, Pp 356-366 (2021)
In this short note we consider the oriented vertex Turán problem in the hypercube: for a fixed oriented graph F→\vec F, determine the maximum cardinality exv(F→,Q→n)e{x_v}\left( {\vec F,{{\vec Q}_n}} \right) of a subset U of the vertices of th
Externí odkaz:
https://doaj.org/article/196b2143d9e947bb89e7b2ab57e2b9d6
Autor:
Gerbner, Dániel, Imolay, András, Katona, Gyula O. H., Nagy, Dániel T., Nagy, Kartal, Patkós, Balázs, Stadler, Domonkos, Zólomy, Kristóf
We study the number of queries needed to identify a monotone Boolean function $f:\{0,1\}^n \rightarrow \{0,1\}$. A query consists of a 0-1-sequence, and the answer is the value of $f$ on that sequence. It is well-known that the number of queries need
Externí odkaz:
http://arxiv.org/abs/2411.19833
Autor:
Brešar Boštjan, Bujtás Csilla, Gologranc Tanja, Klavžar Sandi, Košmrlj Gašper, Marc Tilen, Patkós Balázs, Tuza Zsolt, vizer Máté
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 41, Iss 1, Pp 225-247 (2021)
A longest sequence (v1, . . ., vk) of vertices of a graph G is a Grundy total dominating sequence of G if for all i, N(υj)\∪j=1i-1N(υj)≠∅N({\upsilon _j})\backslash \bigcup\nolimits_{j = 1}^{i - 1} {N({\upsilon _j})} \ne \emptyset . The length
Externí odkaz:
https://doaj.org/article/7354b0e5988e4cd6b60942146d69c9ca
Autor:
Martin, Ryan R., Patkós, Balázs
A classical result of Kleitman determines the maximum number $f(n,s)$ of subsets in a family $\mathcal{F}\subseteq 2^{[n]}$ of sets that do not contain distinct sets $F_1,F_2,\dots,F_s$ that are pairwise disjoint in the case $n\equiv 0,-1$ (mod $s$).
Externí odkaz:
http://arxiv.org/abs/2409.08694
Autor:
Martin, Ryan R., Patkós, Balázs
The Erd\H os Matching Conjecture states that the maximum size $f(n,k,s)$ of a family $\mathcal{F}\subseteq \binom{[n]}{k}$ that does not contain $s$ pairwise disjoint sets is $\max\{|\mathcal{A}_{k,s}|,|\mathcal{B}_{n,k,s}|\}$, where $\mathcal{A}_{k,
Externí odkaz:
http://arxiv.org/abs/2404.12971
We study the following game version of the generalized graph Tur\'an problem. For two fixed graphs F and H, two players, Max and Mini, alternately claim unclaimed edges of the complete graph Kn such that the graph G of the claimed edges must remain F
Externí odkaz:
http://arxiv.org/abs/2404.02288
Autor:
Gerbner, Dániel, Patkós, Balázs
The Kneser cube $Kn_n$ has vertex set $2^{[n]}$ and two vertices $F,F'$ are joined by an edge if and only if $F\cap F'=\emptyset$. For a fixed graph $G$, we are interested in the most number $vex(n,G)$ of vertices of $Kn_n$ that span a $G$-free subgr
Externí odkaz:
http://arxiv.org/abs/2402.02525
In this paper, we address problems related to parameters concerning edge mappings of graphs. Inspired by Ramsey's Theorem, the quantity $m(G, H)$ is defined to be the minimum number $n$ such that for every $f: E(K_n) \rightarrow E(K_n)$ either there
Externí odkaz:
http://arxiv.org/abs/2402.01004
In this paper, we address problems related to parameters concerning edge mappings of graphs. The quantity $h(n,G)$ is defined to be the maximum number of edges in an $n$-vertex graph $H$ such that there exists a mapping $f: E(H)\rightarrow E(H)$ with
Externí odkaz:
http://arxiv.org/abs/2402.01006