Zobrazeno 1 - 10
of 461
pro vyhledávání: '"Pathway activity"'
Autor:
Tay Xin Hui, Shahreen Kasim, Izzatdin Abdul Aziz, Mohd Farhan Md Fudzee, Nazleeni Samiha Haron, Tole Sutikno, Rohayanti Hassan, Hairulnizam Mahdin, Seah Choon Sen
Publikováno v:
BMC Bioinformatics, Vol 25, Iss 1, Pp 1-24 (2024)
Abstract Background With the exponential growth of high-throughput technologies, multiple pathway analysis methods have been proposed to estimate pathway activities from gene expression profiles. These pathway activity inference methods can be divide
Externí odkaz:
https://doaj.org/article/63e7d008de894a00913f61666e7ae209
Autor:
Yingke Yang, Peiluan Li
Publikováno v:
BMC Bioinformatics, Vol 24, Iss 1, Pp 1-16 (2023)
Abstract Background In the field of computational personalized medicine, drug response prediction (DRP) is a critical issue. However, existing studies often characterize drugs as strings, a representation that does not align with the natural descript
Externí odkaz:
https://doaj.org/article/c7ec672c3dd640779da26bfb2b1e6d8b
Publikováno v:
Mathematical Biosciences and Engineering, Vol 20, Iss 2, Pp 1580-1598 (2023)
Biomarkers plays an important role in the prediction and diagnosis of cancers. Therefore, it is urgent to design effective methods to extract biomarkers. The corresponding pathway information of the microarray gene expression data can be obtained fro
Externí odkaz:
https://doaj.org/article/12b7b8293b6a42fba361e1056c832913
Autor:
Bence Szalai, Dániel V. Veres
Publikováno v:
Frontiers in Systems Biology, Vol 3 (2023)
High dimensional characterization of drug targets, compound effects and disease phenotypes are crucial for increased efficiency of drug discovery. High-throughput gene expression measurements are one of the most frequently used data acquisition metho
Externí odkaz:
https://doaj.org/article/c84ee3e8f0504d43ae5b30a52653ea52
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Immunology, Vol 13 (2022)
The ACE2 receptors essential for SARS-CoV-2 infections are expressed not only in the lung but also in many other tissues in the human body. To better understand the disease mechanisms and progression, it is essential to understand how the virus affec
Externí odkaz:
https://doaj.org/article/fc7aff5e6c1c43d683e0e629f87c5ef6
Autor:
Xin Ke, Hao Wu, Yi-Xiao Chen, Yan Guo, Shi Yao, Ming-Rui Guo, Yuan-Yuan Duan, Nai-Ning Wang, Wei Shi, Chen Wang, Shan-Shan Dong, Huafeng Kang, Zhijun Dai, Tie-Lin Yang
Publikováno v:
EBioMedicine, Vol 79, Iss , Pp 104014- (2022)
Summary: Background: Accumulative evidences have shown that dysregulation of biological pathways contributed to the initiation and progression of malignant tumours. Several methods for pathway activity measurement have been proposed, but they are res
Externí odkaz:
https://doaj.org/article/4133d22fcc1d4dabb0956e4569ba6026
Publikováno v:
BMC Bioinformatics, Vol 21, Iss 1, Pp 1-11 (2020)
Abstract Background To identify and prioritize the influential hub genes in a gene-set or biological pathway, most analyses rely on calculation of marginal effects or tests of statistical significance. These procedures may be inappropriate since hub
Externí odkaz:
https://doaj.org/article/a21111e4aa494588acef96ac91f1b64d
Publikováno v:
IEEE Access, Vol 8, Pp 30515-30521 (2020)
Cancers, a group of multifactorial complex diseases, are generally caused by mutation of multiple genes or dysregulation of gene interactions. Applying machine learning methods to microarray gene expression profiles for disease classification is a po
Externí odkaz:
https://doaj.org/article/dc4fb05e8cfb4bf687c9af7a33b6749c
Publikováno v:
Frontiers in Medicine, Vol 8 (2021)
Introduction: Sepsis is a life-threatening complication of a bacterial infection. It is hard to predict which patients with a bacterial infection will develop sepsis, and accurate and timely diagnosis as well as assessment of prognosis is difficult.
Externí odkaz:
https://doaj.org/article/6f9ada095ee247afaa21fdd97baa2ccf