Zobrazeno 1 - 10
of 436 766
pro vyhledávání: '"Pate AN"'
Autor:
Hatakeda, Junichi1,2 (AUTHOR), Shimazaki, Hiroumi2,3 (AUTHOR), Kuramochi, Izumi2 (AUTHOR) kizumi@saitama-med.ac.jp, Iwayama, Takayuki2,4 (AUTHOR), Kobayashi, Sayaka2 (AUTHOR), Matsuki, Hideyuki2,5 (AUTHOR), Yoshimasu, Haruo2 (AUTHOR), Lim, Kheng Seang6 (AUTHOR)
Publikováno v:
Psychiatry & Clinical Neurosciences Reports. Dec2024, Vol. 3 Issue 4, p1-11. 11p.
Synthetic data created by differentially private (DP) generative models is increasingly used in real-world settings. In this context, PATE-GAN has emerged as a popular algorithm, combining Generative Adversarial Networks (GANs) with the private train
Externí odkaz:
http://arxiv.org/abs/2406.13985
Evaluating anomaly detection algorithms in time series data is critical as inaccuracies can lead to flawed decision-making in various domains where real-time analytics and data-driven strategies are essential. Traditional performance metrics assume i
Externí odkaz:
http://arxiv.org/abs/2405.12096
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Conditional Generative Adversarial Networks (CGANs) exhibit significant potential in supervised learning model training by virtue of their ability to generate realistic labeled images. However, numerous studies have indicated the privacy leakage risk
Externí odkaz:
http://arxiv.org/abs/2404.12730
Autor:
Al-Alawneh, Mohammad1 (AUTHOR) Mialawneh@just.edu.jo, Al-Ashqar, Ra'ed1 (AUTHOR), Al-Omari, Isra1 (AUTHOR), Odat, Haitham1 (AUTHOR)
Publikováno v:
Acta Oto-Laryngologica. Nov/Dec2023, Vol. 143 Issue 11/12, p936-939. 4p.
Publikováno v:
Proceedings of the International Multidisciplinary Scientific GeoConference SGEM. 2023, Vol. 23, p191-199. 9p.
The Private Aggregation of Teacher Ensembles (PATE) framework is a versatile approach to privacy-preserving machine learning. In PATE, teacher models that are not privacy-preserving are trained on distinct portions of sensitive data. Privacy-preservi
Externí odkaz:
http://arxiv.org/abs/2312.02132
Autor:
Aigul Maizhanova, Kumarbek Amirkhanov, Shugyla Zhakupbekova, Gulnur Nurymkhan, Sholpan Baytukenova, Assel Dautova, Assem Spanova, Rysgul Ashakayeva
Publikováno v:
Potravinarstvo, Vol 18 (2024)
This study focused on developing a nutritionally enhanced turkey meat pate, incorporating plant-based ingredients like flaxseed and hemp flour. Two canned pate samples were produced: a control sample with turkey meat, liver, heart, fat, skin, beans,
Externí odkaz:
https://doaj.org/article/b6a5a5f9296140dbb033fdc01e5936e6
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.