Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Passenbrunner, Markus"'
Autor:
Passenbrunner, Markus
A result by N.G. Makarov [Algebra i Analiz, 1989] states that for martingales $(M_n)$ on the torus we have the strict inequality \[ \liminf_{n\to\infty} \frac{M_n}{\sum_{k=1}^n |\Delta M_k|} > 0 \] on a set of Hausdorff dimension one, denoting by $\D
Externí odkaz:
http://arxiv.org/abs/2409.13227
In [Y.~K.~Hu, K.~A.~Kopotun, X.~M.~Yu, Constr. Approx. 2000], the authors have obtained a characterization of best $n$-term piecewise polynomial approximation spaces as real interpolation spaces between $L^p$ and some spaces of bounded dyadic ring va
Externí odkaz:
http://arxiv.org/abs/2310.17309
Let $(\Omega,\mathscr F,\mathbb P) $ be a probability space and let $(\mathscr F_n)$ be a binary filtration, i.e. exactly one atom of $\mathscr F_{n-1}$ is divided into two atoms of $\mathscr F_n$ without any restriction on their respective measures.
Externí odkaz:
http://arxiv.org/abs/2304.05647
Assume that we are given a filtration $(\mathscr F_n)$ on a probability space $(\Omega,\mathscr F,\mathbb P)$ of the form that each $\mathscr F_n$ is generated by the partition of one atom of $\mathscr F_{n-1}$ into two atoms of $\mathscr F_n$ having
Externí odkaz:
http://arxiv.org/abs/2303.16470
Autor:
Kamont, Anna, Passenbrunner, Markus
B-splines of order $k$ can be viewed as a mapping $N$ taking a $(k+1)$-tuple of increasing real numbers $a_0 < \cdots < a_k$ and giving as a result a certain piecewise polynomial function. Looking at this mapping $N$ as a whole, basic roperties of B-
Externí odkaz:
http://arxiv.org/abs/2112.03664
Autor:
Passenbrunner, Markus
In this article we prove martingale type pointwise convergence theorems pertaining to tensor product splines defined on $d$-dimensional Euclidean space ($d$ is a positive integer), where conditional expectations are replaced by their corresponding te
Externí odkaz:
http://arxiv.org/abs/2101.08971
Autor:
Keryan, Karen, Passenbrunner, Markus
We show that $L^\infty$-norms of orthoprojectors on certain types of perturbations of spline spaces are bounded independently of the knot sequence. Explicit applications of this result are given, one of them being orthoprojectors onto Chebyshevian sp
Externí odkaz:
http://arxiv.org/abs/2004.14365
Autor:
Kamont, Anna, Passenbrunner, Markus
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 August 2023 524(1)
Publikováno v:
J. Complexity 54, pp. 1-10, 2019
The irregularities of a distribution of $N$ points in the unit interval are often measured with various notions of discrepancy. The discrepancy function can be defined with respect to intervals of the form $[0,t)\subset [0,1)$ or arbitrary subinterva
Externí odkaz:
http://arxiv.org/abs/1902.09877
Autor:
Passenbrunner, Markus
We show that D. L\'{e}pingle's $L_1(\ell_2)$-inequality \begin{equation*} \Big\| \big( \sum_n \mathbb E[f_n | \mathscr F_{n-1}]^2 \big)^{1/2}\Big\|_1 \leq 2\cdot \Big\| \big( \sum_n f_n^2 \big)^{1/2} \Big\|_1, \qquad f_n\in\mathscr F_n, \end{equation
Externí odkaz:
http://arxiv.org/abs/1812.07817