Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Pasquale, Angela"'
Let $(G,G')$ be a reductive dual pair in $Sp(W)$ with rank $G\leq$ rank $G'$ and $G'$ semisimple. The image of the Casimir element of the universal enveloping algebra of $G'$ under the Weil representation $\omega$ is a Capelli operator. It is a hermi
Externí odkaz:
http://arxiv.org/abs/2208.01759
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Olafsson, Gestur, Pasquale, Angela
Ramanujan's Master theorem states that, under suitable conditions, the Mellin transform of an alternating power series provides an interpolation formula for the coefficients of this series. Ramanujan applied this theorem to compute several definite i
Externí odkaz:
http://arxiv.org/abs/1211.0024
Autor:
Pasquale, Angela1 avasileska@yahoo.com, Uršulin-Trstenjak, Natalija2 natalija.ursulin-trstenjak@unin.hr, Matošević, Ivana2 natalija.ursulin-trstenjak@unin.hr
Publikováno v:
Horizons Series A. 2022, Vol. 31, p365-376. 12p.
Autor:
Olafsson, Gestur, Pasquale, Angela
Ramanujan's Master theorem states that, under suitable conditions, the Mellin transform of a power series provides an interpolation formula for the coefficients of this series. Based on the duality of Riemannian symmetric spaces of compact and noncom
Externí odkaz:
http://arxiv.org/abs/1103.5126
Autor:
Olafsson, Gestur, Pasquale, Angela
In this article we connect topics from convex and integral geometry with well known topics in representation theory of semisimple Lie groups by showing that the $Cos^\lamda$ and $Sin^\lambda$-transforms on the Grassmann manifolds $Gr_p(K)=SU (n+1,K)/
Externí odkaz:
http://arxiv.org/abs/1103.4557
Autor:
Pasquale, Angela, Sundari, Maddala
Let X be a Riemannian symmetric space of the noncompact type. We prove that the solution of the time-dependent Schr\"odinger equation on X with square integrable initial condition f is identically zero at all times t whenever f and the solution at a
Externí odkaz:
http://arxiv.org/abs/1011.1066
This note is a continuation of the previous paper math.AP/0411383 by the same authors. Its purpose is to extend the results of math.AP/0411383 to the context of root systems with even multiplicities. Under the even multiplicity assumption, we prove a
Externí odkaz:
http://arxiv.org/abs/math/0508234
We prove a Paley-Wiener Theorem for a class of symmetric spaces of the compact type, in which all root multiplicities are even. This theorem characterizes functions of small support in terms of holomorphic extendability and exponential type of their
Externí odkaz:
http://arxiv.org/abs/math/0411383
Autor:
Olafsson, Gestur, Pasquale, Angela
The $\Theta$-spherical functions generalize the spherical functions on Riemannian symmetric spaces and the spherical functions on non-compactly causal symmetric spaces. In this article we consider the case of even multiplicity functions. We construct
Externí odkaz:
http://arxiv.org/abs/math/0304361