Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Pascual, Jara"'
Publikováno v:
IEEE Access, Vol 12, Pp 111158-111168 (2024)
We analyze the connection between two perspectives when defining fuzzy sets: the viewpoint of mappings and the viewpoint of families of level cuts. This analysis is mathematically supported by the framework of a categorical adjunction, which serves a
Externí odkaz:
https://doaj.org/article/4ad63f64f6ff420199bfc165cbcac8aa
Autor:
Josefa M. García, Pascual Jara
Publikováno v:
Advances in Fuzzy Systems, Vol 2023 (2023)
In the fuzzy theory of sets and groups, the use of α-levels is a standard to translate problems from the fuzzy to the crisp framework. Using strong α-levels, it is possible to establish a one to one correspondence which makes possible doubly, a gra
Externí odkaz:
https://doaj.org/article/0a19fa49297d470e899af0c3ececf2cb
Autor:
Josefa M. García, Pascual Jara
Publikováno v:
Mathematics, Vol 10, Iss 22, p 4272 (2022)
The categorical treatment of fuzzy modules presents some problems, due to the well known fact that the category of fuzzy modules is not abelian, and even not normal. Our aim is to give a representation of the category of fuzzy modules inside a genera
Externí odkaz:
https://doaj.org/article/51c4e43fd5f14b18a1ba1221ec945c97
Let $R$ be a semisimple ring. A pair $(A,C)$ is called almost-Koszul if $A$ is a connected graded $R$-ring and $C$ is a compatible connected graded $R$-coring. To an almost-Koszul pair one associates three chain complexes and three cochain complexes
Externí odkaz:
http://arxiv.org/abs/1011.4243
Autor:
PASCUAL JARA
Publikováno v:
Web of Science
For any commutative ring $A$ we introduce a generalization of $S$--noetherian rings using a here\-ditary torsion theory $\sigma$ instead of a multiplicatively closed subset $S\subseteq{A}$. It is proved that totally noetherian w.r.t. $\sigma$ is a lo
Publikováno v:
IEEE Transactions on Fuzzy Systems. :1-12
Autor:
Saeed Salamian, Pascual Jara
Publikováno v:
Journal of Algebra and Its Applications.
In this paper, we first describe the gradual modules and the homomorphisms between two gradual modules. Next, we introduce the category G-Mod, whose objects are all gradual modules and morphisms are all homomorphisms between two gradual modules. Also
Autor:
Pascual Jara
For any commutative ring $A$ we introduce a generalization of $S$--artinian rings using a hereditary torsion theory $\sigma$ instead of a multiplicative closed subset $S\subseteq{A}$. It is proved that if $A$ is a totally $\sigma$--artinian ring, the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49fb45e543b454adffe4930bae001b86
Publikováno v:
Digibug. Repositorio Institucional de la Universidad de Granada
instname
Volume: 30, Issue: 30 285-303
International Electronic Journal of Algebra
instname
Volume: 30, Issue: 30 285-303
International Electronic Journal of Algebra
The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \emph{lattice decompositions}. In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::44a014eb7351b1118f0d78bff54cd15f
http://hdl.handle.net/10481/70239
http://hdl.handle.net/10481/70239