Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Pascali, Eduardo"'
Autor:
Mangino, Elisabetta, Pascali, Eduardo
Local existence properties of initial boundary value problems associated with a new type of systems of differential equations with "maxima" are investigated.
Externí odkaz:
http://arxiv.org/abs/2009.13327
Autor:
Mangino, Elisabetta, Pascali, Eduardo
Publikováno v:
Studia Universitatis Babeş-Bolyai, Mathematica; Dec2023, Vol. 68 Issue 4, p827-836, 10p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Avantaggiati, Antonio1, Pascali, Eduardo2 eduardo.pascali@unisalento.it
Publikováno v:
Note di Matematica. 2015, Vol. 35 Issue 1, p125-133. 9p.
Autor:
PASCALI, Eduardo
Publikováno v:
Rendiconti di Matematica e delle Sue Applicazioni, Vol 31, Iss 1-2, Pp 21-34 (2011)
We propose a new length-type functional defined on (set-valued) curves in probability spaces and we give, under suitable conditions, an integral representation formula.
Publikováno v:
Le Matematiche, Vol 64, Iss 2, Pp 3-16 (2009)
This paper deals with extended solutions of a system of nonlinear integro-differential equations. This system is obtained in the process of applying the Galerkin method for some initial-boundary value problems.
We show the existence of solutions for a second order ordinary differential equation coupled with a boundary value condition and an integral condition.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4034::7b9ec8392bf79e3c5283ce232d4869d4
https://hdl.handle.net/11587/397237
https://hdl.handle.net/11587/397237
Autor:
Bogdan M, PASCALI, Eduardo
Closedness of the solution map is investigated for a sequence of parametric inequality related to a "limit" problem governed by a pseudomonotone bifunction. The main result gives sufficient conditions for closedness of the solution map defined on the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4034::cedf1d9426826d52df5a95b5b0d88753
https://hdl.handle.net/11587/386165
https://hdl.handle.net/11587/386165