Zobrazeno 1 - 10
of 346
pro vyhledávání: '"Parvizi, M."'
U. Jezernik and P. Moravec have shown that if $G$ is a finite group with a subgroup $H$ of index $n$, then nth power of the Bogomolov multiplier of $G$, $\tilde{B_0}(G)^n$ is isomorphic to a subgroup of $\tilde{B_0}(H)$. In this paper we want to prov
Externí odkaz:
http://arxiv.org/abs/2303.05765
In this paper, the Bogomolov multiplier of $p$-groups of order $p^7$ ($p>2$) and exponent $p$ is given.
Externí odkaz:
http://arxiv.org/abs/2301.10534
The Bogomolov multiplier of a group $G$ introduced by Bogomolov in $1988$. After that in $2012$, Moravec introduced an equivalent definition of the Bogomolov multiplier. In this paper we generalized the Bogomolov multiplier with respect to a variety
Externí odkaz:
http://arxiv.org/abs/2211.08725
Publikováno v:
Comm. in Algebra, Volume 48, 2020 - Issue 3
In this paper we extend the notion of CP covers for groups to the field of Lie algebras, and show that despite the case of groups, all CP covers of a Lie algebra are isomorphic. Finally we show that CP covers of groups and Lie rings which are in Laza
Externí odkaz:
http://arxiv.org/abs/1904.04444
Autor:
Niroomand, P., Parvizi, M.
For a $p$-group of order $p^n$, it is known that the order of $2$-nilpotent multiplier is equal to $|\mathcal{M}^{(2)}(G)|=p^{\f12n(n-1)(n-2)+3-s_2(G)}$ for an integer $s_2(G)$. In this article, we characterize all of non abelian $p$-groups satisfyin
Externí odkaz:
http://arxiv.org/abs/1812.00245
Publikováno v:
Asian European journal of mathematics, 2021
In this paper we consider all groups of order dividing $p^5$. We obtain the explicit structure of the non-abelian tensor square, non-abelian exterior square, tensor center, exterior center, the third homotopy group of suspension of an Eilenberg-MacLa
Externí odkaz:
http://arxiv.org/abs/1807.08111
Autor:
Niroomand, P., Parvizi, M.
Publikováno v:
J. Geom. Phys. 121 (2017), 180--185
In the present context, we investigate to obtain some more results about $2$-nilpotent multiplier $\mathcal{M}^{(2)}(L)$ of a finite dimensional nilpotent Lie algebra $L$. For instance, we characterize the structure of $\mathcal{M}^{(2)}(H)$ when $H$
Externí odkaz:
http://arxiv.org/abs/1610.05581
Publikováno v:
Bull. Malays. Math. Sci. Soc. 42 (2019), no. 4, 1295--1304
We prove a theorem of splitting for the nonabelian tensor product $L \otimes N$ of a pair $(L,N)$ of Lie algebras $L$ and $N$ in terms of its diagonal ideal $L \square N$ and of the nonabelian exterior product $L \wedge N$. A similar circumstance was
Externí odkaz:
http://arxiv.org/abs/1502.00417
Publikováno v:
Filomat, 2017 Jan 01. 31(3), 877-883.
Externí odkaz:
https://www.jstor.org/stable/24902185
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.