Zobrazeno 1 - 10
of 294
pro vyhledávání: '"Park, JungHwan"'
We consider the question of extending a smooth homotopy coherent finite cyclic group action on the boundary of a smooth 4-manifold to its interior. As a result, we prove that Dehn twists along any Seifert homology sphere, except the 3-sphere, on thei
Externí odkaz:
http://arxiv.org/abs/2409.11806
This article presents a survey on the topic of embedding 3-manifolds in definite 4-manifolds, emphasizing the latest progress in the field. We will focus on the significant role played by Donaldson's diagonalization theorem and the combinatorics of i
Externí odkaz:
http://arxiv.org/abs/2407.03692
We prove that the $(2n,1)$-cable of the figure-eight knot is not smoothly slice when $n$ is odd, by using the real Seiberg-Witten Fr{\o}yshov invariant of Konno-Miyazawa-Taniguchi. For the computation, we develop an $O(2)$-equivariant version of the
Externí odkaz:
http://arxiv.org/abs/2405.09295
Autor:
Yoo, Kang Min, Han, Jaegeun, In, Sookyo, Jeon, Heewon, Jeong, Jisu, Kang, Jaewook, Kim, Hyunwook, Kim, Kyung-Min, Kim, Munhyong, Kim, Sungju, Kwak, Donghyun, Kwak, Hanock, Kwon, Se Jung, Lee, Bado, Lee, Dongsoo, Lee, Gichang, Lee, Jooho, Park, Baeseong, Shin, Seongjin, Yu, Joonsang, Baek, Seolki, Byeon, Sumin, Cho, Eungsup, Choe, Dooseok, Han, Jeesung, Jin, Youngkyun, Jun, Hyein, Jung, Jaeseung, Kim, Chanwoong, Kim, Jinhong, Kim, Jinuk, Lee, Dokyeong, Park, Dongwook, Sohn, Jeong Min, Han, Sujung, Heo, Jiae, Hong, Sungju, Jeon, Mina, Jung, Hyunhoon, Jung, Jungeun, Jung, Wangkyo, Kim, Chungjoon, Kim, Hyeri, Kim, Jonghyun, Kim, Min Young, Lee, Soeun, Park, Joonhee, Shin, Jieun, Yang, Sojin, Yoon, Jungsoon, Lee, Hwaran, Bae, Sanghwan, Cha, Jeehwan, Gylleus, Karl, Ham, Donghoon, Hong, Mihak, Hong, Youngki, Hong, Yunki, Jang, Dahyun, Jeon, Hyojun, Jeon, Yujin, Jeong, Yeji, Ji, Myunggeun, Jin, Yeguk, Jo, Chansong, Joo, Shinyoung, Jung, Seunghwan, Kim, Adrian Jungmyung, Kim, Byoung Hoon, Kim, Hyomin, Kim, Jungwhan, Kim, Minkyoung, Kim, Minseung, Kim, Sungdong, Kim, Yonghee, Kim, Youngjun, Kim, Youngkwan, Ko, Donghyeon, Lee, Dughyun, Lee, Ha Young, Lee, Jaehong, Lee, Jieun, Lee, Jonghyun, Lee, Jongjin, Lee, Min Young, Lee, Yehbin, Min, Taehong, Min, Yuri, Moon, Kiyoon, Oh, Hyangnam, Park, Jaesun, Park, Kyuyon, Park, Younghun, Seo, Hanbae, Seo, Seunghyun, Sim, Mihyun, Son, Gyubin, Yeo, Matt, Yeom, Kyung Hoon, Yoo, Wonjoon, You, Myungin, Ahn, Doheon, Ahn, Homin, Ahn, Joohee, Ahn, Seongmin, An, Chanwoo, An, Hyeryun, An, Junho, An, Sang-Min, Byun, Boram, Byun, Eunbin, Cha, Jongho, Chang, Minji, Chang, Seunggyu, Cho, Haesong, Cho, Youngdo, Choi, Dalnim, Choi, Daseul, Choi, Hyoseok, Choi, Minseong, Choi, Sangho, Choi, Seongjae, Choi, Wooyong, Chun, Sewhan, Go, Dong Young, Ham, Chiheon, Han, Danbi, Han, Jaemin, Hong, Moonyoung, Hong, Sung Bum, Hwang, Dong-Hyun, Hwang, Seongchan, Im, Jinbae, Jang, Hyuk Jin, Jang, Jaehyung, Jang, Jaeni, Jang, Sihyeon, Jang, Sungwon, Jeon, Joonha, Jeong, Daun, Jeong, Joonhyun, Jeong, Kyeongseok, Jeong, Mini, Jin, Sol, Jo, Hanbyeol, Jo, Hanju, Jo, Minjung, Jung, Chaeyoon, Jung, Hyungsik, Jung, Jaeuk, Jung, Ju Hwan, Jung, Kwangsun, Jung, Seungjae, Ka, Soonwon, Kang, Donghan, Kang, Soyoung, Kil, Taeho, Kim, Areum, Kim, Beomyoung, Kim, Byeongwook, Kim, Daehee, Kim, Dong-Gyun, Kim, Donggook, Kim, Donghyun, Kim, Euna, Kim, Eunchul, Kim, Geewook, Kim, Gyu Ri, Kim, Hanbyul, Kim, Heesu, Kim, Isaac, Kim, Jeonghoon, Kim, Jihye, Kim, Joonghoon, Kim, Minjae, Kim, Minsub, Kim, Pil Hwan, Kim, Sammy, Kim, Seokhun, Kim, Seonghyeon, Kim, Soojin, Kim, Soong, Kim, Soyoon, Kim, Sunyoung, Kim, Taeho, Kim, Wonho, Kim, Yoonsik, Kim, You Jin, Kim, Yuri, Kwon, Beomseok, Kwon, Ohsung, Kwon, Yoo-Hwan, Lee, Anna, Lee, Byungwook, Lee, Changho, Lee, Daun, Lee, Dongjae, Lee, Ha-Ram, Lee, Hodong, Lee, Hwiyeong, Lee, Hyunmi, Lee, Injae, Lee, Jaeung, Lee, Jeongsang, Lee, Jisoo, Lee, Jongsoo, Lee, Joongjae, Lee, Juhan, Lee, Jung Hyun, Lee, Junghoon, Lee, Junwoo, Lee, Se Yun, Lee, Sujin, Lee, Sungjae, Lee, Sungwoo, Lee, Wonjae, Lee, Zoo Hyun, Lim, Jong Kun, Lim, Kun, Lim, Taemin, Na, Nuri, Nam, Jeongyeon, Nam, Kyeong-Min, Noh, Yeonseog, Oh, Biro, Oh, Jung-Sik, Oh, Solgil, Oh, Yeontaek, Park, Boyoun, Park, Cheonbok, Park, Dongju, Park, Hyeonjin, Park, Hyun Tae, Park, Hyunjung, Park, Jihye, Park, Jooseok, Park, Junghwan, Park, Jungsoo, Park, Miru, Park, Sang Hee, Park, Seunghyun, Park, Soyoung, Park, Taerim, Park, Wonkyeong, Ryu, Hyunjoon, Ryu, Jeonghun, Ryu, Nahyeon, Seo, Soonshin, Seo, Suk Min, Shim, Yoonjeong, Shin, Kyuyong, Shin, Wonkwang, Sim, Hyun, Sim, Woongseob, Soh, Hyejin, Son, Bokyong, Son, Hyunjun, Son, Seulah, Song, Chi-Yun, Song, Chiyoung, Song, Ka Yeon, Song, Minchul, Song, Seungmin, Wang, Jisung, Yeo, Yonggoo, Yi, Myeong Yeon, Yim, Moon Bin, Yoo, Taehwan, Yoo, Youngjoon, Yoon, Sungmin, Yoon, Young Jin, Yu, Hangyeol, Yu, Ui Seon, Zuo, Xingdong, Bae, Jeongin, Bae, Joungeun, Cho, Hyunsoo, Cho, Seonghyun, Cho, Yongjin, Choi, Taekyoon, Choi, Yera, Chung, Jiwan, Han, Zhenghui, Heo, Byeongho, Hong, Euisuk, Hwang, Taebaek, Im, Seonyeol, Jegal, Sumin, Jeon, Sumin, Jeong, Yelim, Jeong, Yonghyun, Jiang, Can, Jiang, Juyong, Jin, Jiho, Jo, Ara, Jo, Younghyun, Jung, Hoyoun, Jung, Juyoung, Kang, Seunghyeong, Kim, Dae Hee, Kim, Ginam, Kim, Hangyeol, Kim, Heeseung, Kim, Hyojin, Kim, Hyojun, Kim, Hyun-Ah, Kim, Jeehye, Kim, Jin-Hwa, Kim, Jiseon, Kim, Jonghak, Kim, Jung Yoon, Kim, Rak Yeong, Kim, Seongjin, Kim, Seoyoon, Kim, Sewon, Kim, Sooyoung, Kim, Sukyoung, Kim, Taeyong, Ko, Naeun, Koo, Bonseung, Kwak, Heeyoung, Kwon, Haena, Kwon, Youngjin, Lee, Boram, Lee, Bruce W., Lee, Dagyeong, Lee, Erin, Lee, Euijin, Lee, Ha Gyeong, Lee, Hyojin, Lee, Hyunjeong, Lee, Jeeyoon, Lee, Jeonghyun, Lee, Jongheok, Lee, Joonhyung, Lee, Junhyuk, Lee, Mingu, Lee, Nayeon, Lee, Sangkyu, Lee, Se Young, Lee, Seulgi, Lee, Seung Jin, Lee, Suhyeon, Lee, Yeonjae, Lee, Yesol, Lee, Youngbeom, Lee, Yujin, Li, Shaodong, Liu, Tianyu, Moon, Seong-Eun, Moon, Taehong, Nihlenramstroem, Max-Lasse, Oh, Wonseok, Oh, Yuri, Park, Hongbeen, Park, Hyekyung, Park, Jaeho, Park, Nohil, Park, Sangjin, Ryu, Jiwon, Ryu, Miru, Ryu, Simo, Seo, Ahreum, Seo, Hee, Seo, Kangdeok, Shin, Jamin, Shin, Seungyoun, Sin, Heetae, Wang, Jiangping, Wang, Lei, Xiang, Ning, Xiao, Longxiang, Xu, Jing, Yi, Seonyeong, Yoo, Haanju, Yoo, Haneul, Yoo, Hwanhee, Yu, Liang, Yu, Youngjae, Yuan, Weijie, Zeng, Bo, Zhou, Qian, Cho, Kyunghyun, Ha, Jung-Woo, Park, Joonsuk, Hwang, Jihyun, Kwon, Hyoung Jo, Kwon, Soonyong, Lee, Jungyeon, Lee, Seungho, Lim, Seonghyeon, Noh, Hyunkyung, Choi, Seungho, Lee, Sang-Woo, Lim, Jung Hwa, Sung, Nako
We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code
Externí odkaz:
http://arxiv.org/abs/2404.01954
We introduce an oriented rational band move, a generalization of an ordinary oriented band move, and show that if a knot $K$ in the three-sphere can be made into the $(n+1)$-component unlink by $n$ oriented rational band moves, then $K$ is rationally
Externí odkaz:
http://arxiv.org/abs/2311.11507
Conjecturally, a knot is slice if and only if its positive Whitehead double is slice. We consider an analogue of this conjecture for slice disks in the four-ball: two slice disks of a knot are smoothly isotopic if and only if their positive Whitehead
Externí odkaz:
http://arxiv.org/abs/2310.19713
A geometric interpretation of the vanishing of Milnor's higher order linking numbers remains an important open problem in the study of link concordance. In the 1990's, works of Cochran-Orr and Livingston exhibit a potential resolution to this problem
Externí odkaz:
http://arxiv.org/abs/2305.11268
A knot in $S^3$ is topologically slice if it bounds a locally flat disk in $B^4$. A knot in $S^3$ is rationally slice if it bounds a smooth disk in a rational homology ball. We prove that the smooth concordance group of topologically and rationally s
Externí odkaz:
http://arxiv.org/abs/2304.06265
We discuss an obstruction to a knot being smoothly slice that comes from minimum-genus bounds on smoothly embedded surfaces in definite 4-manifolds. As an example, we provide an alternate proof of the fact that the (2,1)-cable of the figure eight kno
Externí odkaz:
http://arxiv.org/abs/2303.10587
We prove that there are homology three-spheres that bound definite four-manifolds, but any such bounding four-manifold must be built out of many handles. The argument uses the homology cobordism invariant $\Gamma$ from instanton Floer homology.
Externí odkaz:
http://arxiv.org/abs/2210.06607