Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Park, Ariana"'
Let $k \geq 2$ be an integer and $\mathbb F_q$ be a finite field with $q$ elements. We prove several results on the distribution in short intervals of polynomials in $\mathbb F_q[x]$ that are not divisible by the $k$th power of any non-constant polyn
Externí odkaz:
http://arxiv.org/abs/2310.02495
We obtain explicit forms of the current best known asymptotic upper bounds for gaps between squarefree integers. In particular we show, for any $x \ge 2$, that every interval of the form $(x, x + 11x^{1/5}\log x]$ contains a squarefree integer. The c
Externí odkaz:
http://arxiv.org/abs/2211.09975
Publikováno v:
In Journal of Number Theory January 2024 254:336-357
Publikováno v:
International Journal of Number Theory; Apr2024, Vol. 20 Issue 3, p867-892, 26p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Smith, Sara, Ellgass, Madeline, Park, Ariana, Kaib, Alexah, Lindberg, Haley, Burns, Christopher, Donti, Taraka, Borandi, P.J., Hegde, Madhuri
Publikováno v:
In Genetics in Medicine Open 2024 2 Supplement 1
We obtain explicit forms of the current best known asymptotic upper bounds for gaps between squarefree and cubefree integers. In particular we show, for any $x \ge 2$, that every interval of the form $(x, x + 11x^{1/5}\log x]$ contains a squarefree i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b50167c4f482fa260d6aff9d592cf56
http://arxiv.org/abs/2211.09975
http://arxiv.org/abs/2211.09975