Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Parisa Haghani"'
Autor:
Bo Li, Tara Sainath, Ruoming Pang, Shuo-Yiin Chang, Qiumin Xu, Trevor Strohman, Vince Chen, Qiao Liang, Heguang Liu, Yanzhang He, Parisa Haghani, Sameer Bidichandani
On-device end-to-end (E2E) models have shown improvements over a conventional model on English Voice Search tasks in both quality and latency. E2E models have also shown promising results for multilingual automatic speech recognition (ASR). In this p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e69d8dfd3d8f4389b06eed47e083c02c
http://arxiv.org/abs/2208.13916
http://arxiv.org/abs/2208.13916
Autor:
Bo Li, Ruoming Pang, Yu Zhang, Tara N. Sainath, Trevor Strohman, Parisa Haghani, Yun Zhu, Brian Farris, Neeraj Gaur, Manasa Prasad
Publikováno v:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Autor:
Chao Zhang, Bo Li, Tara Sainath, Trevor Strohman, Sepand Mavandadi, Shuo-Yiin Chang, Parisa Haghani
Language identification is critical for many downstream tasks in automatic speech recognition (ASR), and is beneficial to integrate into multilingual end-to-end ASR as an additional task. In this paper, we propose to modify the structure of the casca
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::48bd4fe6333011053c8e723968f9842b
Autor:
Bhuvana Ramabhadran, Isabel Leal, Yun Zhu, Manasa Prasad, Brian Farris, Neeraj Gaur, Parisa Haghani, Pedro J. Moreno Mengibar
Publikováno v:
Interspeech 2021.
Autor:
Bhuvana Ramabhadran, Yun Zhu, Parisa Haghani, Manasa Prasad, Neeraj Gaur, Brian Farris, Isabel Leal, Pedro J. Moreno
Publikováno v:
ICASSP
When trained on related or low-resource languages, multilingual speech recognition models often outperform their monolingual counterparts. However, these models can suffer from loss in performance for high resource or unrelated languages. We investig
Autor:
Isabel Leal, Yun Zhu, Brian Farris, Bhuvana Ramabhadran, Neeraj Gaur, Hasim Sak, Pedro J. Moreno, Anshuman Tripathi, Qian Zhang, Parisa Haghani, Hainan Xu, Han Lu
Publikováno v:
INTERSPEECH
Publikováno v:
ASRU
Recent advances in end-to-end speech recognition have made it possible to build multilingual models, capable of recognizing speech in multiple languages. Multilingual models can outperform their monolingual counterparts, depending on the amount of tr
Autor:
Khe Chai Sim, Mohamed G. Elfeky, Trevor Strohman, Ananya Misra, Michiel Bacchiani, Arun Narayanan, Anshuman Tripathi, Golan Pundak, Parisa Haghani
Publikováno v:
SLT
Current state-of-the-art automatic speech recognition systems are trained to work in specific `domains', defined based on factors like application, sampling rate and codec. When such recognizers are used in conditions that do not match the training d
Autor:
Arun Narayanan, Galen Chuang, Zhongdi Qu, Rohit Prabhavalkar, Neeraj Gaur, Parisa Haghani, Pedro J. Moreno, Michiel Bacchiani, Austin Waters
Publikováno v:
SLT
Conventional spoken language understanding systems consist of two main components: an automatic speech recognition module that converts audio to a transcript, and a natural language understanding module that transforms the resulting text (or top N hy
Autor:
Bo Li, Tara N. Sainath, Khe Chai Sim, Parisa Haghani, Anshuman Tripathi, Ananya Misra, Golan Pundak, Arun Narayanan, Michiel Bacchiani
Publikováno v:
INTERSPEECH