Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Paris Perdikaris"'
Publikováno v:
The Astrophysical Journal, Vol 976, Iss 2, p 200 (2024)
We introduce Disk2Planet, a machine-learning-based tool to infer key parameters in disk–planet systems from observed protoplanetary disk structures. Disk2Planet takes as input the disk structures in the form of 2D density and velocity maps, and out
Externí odkaz:
https://doaj.org/article/0954bdc246554d74a5185166f6dfcee5
PPDONet: Deep Operator Networks for Fast Prediction of Steady-state Solutions in Disk–Planet Systems
Publikováno v:
The Astrophysical Journal Letters, Vol 950, Iss 2, p L12 (2023)
We develop a tool, which we name Protoplanetary Disk Operator Network (PPDONet), that can predict the solution of disk–planet interactions in protoplanetary disks in real time. We base our tool on Deep Operator Networks, a class of neural networks
Externí odkaz:
https://doaj.org/article/58394c9e04534ebcb42a2417cd327fd5
Autor:
Lia Gander, Simone Pezzuto, Ali Gharaviri, Rolf Krause, Paris Perdikaris, Francisco Sahli Costabal
Publikováno v:
Frontiers in Physiology, Vol 13 (2022)
Computational models of atrial fibrillation have successfully been used to predict optimal ablation sites. A critical step to assess the effect of an ablation pattern is to pace the model from different, potentially random, locations to determine whe
Externí odkaz:
https://doaj.org/article/602d938595bb4c54aafc7f4df5edb3db
Publikováno v:
Frontiers in Physics, Vol 8 (2020)
A critical procedure in diagnosing atrial fibrillation is the creation of electro-anatomic activation maps. Current methods generate these mappings from interpolation using a few sparse data points recorded inside the atria; they neither include prio
Externí odkaz:
https://doaj.org/article/f96249a175624e17bd50ccb5ae280d8d
Publikováno v:
Journal of Engineering Mechanics. 149
Publikováno v:
Journal of Machine Learning for Modeling and Computing. 3:23-46
Autor:
Georgios, Kissas, Eileen, Hwuang, Elizabeth W, Thompson, Nadav, Schwartz, John A, Detre, Walter R, Witschey, Paris, Perdikaris
Publikováno v:
Journal of Biomechanical Engineering. 144
Hypertensive pregnancy disorders (HPDs), such as pre-eclampsia, are leading sources of both maternal and fetal morbidity in pregnancy. Noninvasive imaging, such as ultrasound (US) and magnetic resonance imaging (MRI), is an important tool for predict
Neural Operators offer a powerful, data-driven tool for solving parametric PDEs as they can represent maps between infinite-dimensional function spaces. In this work, we employ physics-informed Neural Operators in the context of high-dimensional, Bay
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d401e51ae9131904a9447931afd2261
http://arxiv.org/abs/2209.02772
http://arxiv.org/abs/2209.02772
Autor:
Sifan Wang, Paris Perdikaris
Publikováno v:
Knowledge-Guided Machine Learning ISBN: 9781003143376
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::be85e35990c0b3c33e069f7f2bb3bd22
https://doi.org/10.1201/9781003143376-6
https://doi.org/10.1201/9781003143376-6
Publikováno v:
SIAM Journal on Scientific Computing. 43:A3055-A3081
The widespread use of neural networks across different scientific domains often involves constraining them to satisfy certain symmetries, conservation laws, or other domain knowledge. Such constrai...