Zobrazeno 1 - 10
of 311
pro vyhledávání: '"Paris, R B"'
Autor:
Paris, R B
We examine the sum of a decaying exponential (depending non-linearly on the summation index) and a Bessel function in the form \[\sum_{n=1}^\infty e^{-an^p}\frac{J_\nu(an^px)}{(an^px/2)^\nu}\qquad (x>0),\] in the limit $a\to0$, where $J_\nu(z)$ is th
Externí odkaz:
http://arxiv.org/abs/2206.09383
We consider a generalisation of a definite integral involving the Bessel function of the first kind. It is shown that this integral can be expressed in terms of the Fox-Wright function ${}_p\Psi_q(z)$ of one variable. Some consequences of this repres
Externí odkaz:
http://arxiv.org/abs/2205.03161
Autor:
Paris, R B
The $\nu$-zeros of the Bessel functions of purely imaginary order are examined for fixed argument $x>0$. In the case of the modified Bessel function of the second kind $K_{i\nu}(x)$, it is known that it possesses a countably infinite sequence of real
Externí odkaz:
http://arxiv.org/abs/2204.09306
Autor:
Paris, R B
We revisit a representation for the Riemann zeta function $\zeta(s)$ expressed in terms of normalised incomplete gamma functions given by the author and S. Cang in Methods Appl. Anal. {\bf 4} (1997) 449--470. Use of the uniform asymptotics of the inc
Externí odkaz:
http://arxiv.org/abs/2203.07863
Autor:
Paris, R B
We consider the asymptotic expansion of the Humbert hyper-Bessel function expressed in terms of a ${}_0F_2$ hypergeometric function by \[J_{m,n}(x)=\frac{(x/3)^{m+n}}{m! n!}\,{}_0F_2(-\!\!\!-;m+1, n+1; -(x/3)^3)\] as $x\to+\infty$, where $m$, $n$ are
Externí odkaz:
http://arxiv.org/abs/2202.02049
Autor:
Paris, R B
We consider the expansion of an integral considered by F.G. Tricomi given by \[\int_{-\infty}^\infty x e^{-x^2}(\frac{1}{2}+\frac{1}{2}\mbox{erf}\,x)^{m} dx\] as $m\to\infty$. The procedure involves a suitable change of variable and the inversion of
Externí odkaz:
http://arxiv.org/abs/2201.02399
Autor:
Paris, R B
We consider the asymptotic expansion of Kr\"atzel's integral \[F_{p,\nu}(x)=\int_0^\infty t^{\nu-1} e^{-t^p-x/t}\,dt\qquad (|\arg\,x|<\pi/2),\] for $p>0$ as $|x|\to \infty$ in the sector $|\arg\,x|<\pi/2$ employing the method of steepest descents. An
Externí odkaz:
http://arxiv.org/abs/2112.02928