Zobrazeno 1 - 10
of 392
pro vyhledávání: '"Pareschi, L."'
Publikováno v:
Phys. Rev. E 102, 022303 (2020)
We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multi-agent description leads to study the evolution over time of a system of
Externí odkaz:
http://arxiv.org/abs/2004.13620
The adoption of containment measures to reduce the amplitude of the epidemic peak is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental models must be modified and studied to correctly describe the effects of forced ext
Externí odkaz:
http://arxiv.org/abs/2004.13067
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this work we focus on the construction of numerical schemes for the approximation of stochastic mean--field equations which preserve the nonnegativity of the solution. The method here developed makes use of a mean-field Monte Carlo method in the p
Externí odkaz:
http://arxiv.org/abs/1712.01677
We develop a new Monte Carlo method that solves hyperbolic transport equations with stiff terms, characterized by a (small) scaling parameter. In particular, we focus on systems which lead to a reduced problem of parabolic type in the limit when the
Externí odkaz:
http://arxiv.org/abs/1707.09672
In this paper we consider the development of Implicit-Explicit (IMEX) Runge-Kutta schemes for hyperbolic systems with multiscale relaxation. In such systems the scaling depends on an additional parameter which modifies the nature of the asymptotic be
Externí odkaz:
http://arxiv.org/abs/1701.04370
Autor:
Pareschi, L., Zanella, M.
Publikováno v:
In Journal of Computational Physics 15 December 2020 423
In this paper we develop a class of Implicit-Explicit Runge-Kutta schemes for solving the multi-scale semiconductor Boltzmann equation. The relevant scale which characterizes this kind of problems is the diffusive scaling. This means that, in the lim
Externí odkaz:
http://arxiv.org/abs/1305.1759
We are interested in a class of numerical schemes for the optimization of nonlinear hyperbolic partial differential equations. We present continuous and discretized relaxation schemes for scalar, one-- conservation laws. We present numerical results
Externí odkaz:
http://arxiv.org/abs/1207.3671
Autor:
Dimarco, G., Pareschi, L.
We discuss Implicit-Explicit (IMEX) Runge Kutta methods which are particularly adapted to stiff kinetic equations of Boltzmann type. We consider both the case of easy invertible collision operators and the challenging case of Boltzmann collision oper
Externí odkaz:
http://arxiv.org/abs/1205.0882