Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Parangama Sarkar"'
Autor:
Ian M. Aberbach, Parangama Sarkar
Publikováno v:
Proceedings of the American Mathematical Society. 148:3245-3262
Let $(R,\mathfrak m)$ be a local (Noetherian) ring of dimension $d$ and $M$ a finite length $R$-module with free resolution $G_\bullet$. De Stefani, Huneke, and Nunez-Betancourt explored two questions about the properties of resolutions of $M$. First
Autor:
Steven Dale Cutkosky, Parangama Sarkar
We develop a theory of multiplicities and mixed multiplicities of filtrations, extending the theory for filtrations of $m$-primary ideals to arbitrary (not necessarily Noetherian) filtrations. The mixed multiplicities of $r$ filtrations on an analyti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c1a0557f6179a665786937941faa5081
http://arxiv.org/abs/2102.08165
http://arxiv.org/abs/2102.08165
Publikováno v:
Transactions of the American Mathematical Society. 372:6183-6211
In this paper we define and explore properties of mixed multiplicities of (not necessarily Noetherian) filtrations of $m_R$-primary ideals in a Noetherian local ring $R$, generalizing the classical theory for $m_R$-primary ideals. We construct a real
Autor:
Jugal Verma, Parangama Sarkar
Publikováno v:
Nagoya Mathematical Journal. 228:1-20
We find conditions on the local cohomology modules of multi-Rees algebras of admissible filtrations which enable us to predict joint reduction numbers. As a consequence, we are able to prove a generalization of a result of Reid, Roberts and Vitulli i
Publikováno v:
Journal of Algebra. 444:527-566
Hilbert functions and Hilbert polynomials of Z s -graded admissible filtrations of ideals { F ( n _ ) } n _ ∈ Z s such that λ ( R F ( n _ ) ) is finite for all n _ ∈ Z s are studied. Conditions are provided for the Hilbert function H F ( n _ ) :
Autor:
Parangama Sarkar
Let $J\subset I$ be ideals in a formally equidimensional local ring with $\lambda(I/J)
Comment: Minor correction in the statement of Proposition 2.4
Comment: Minor correction in the statement of Proposition 2.4
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::204b7672d868a4ab267868cea9ca38e6
Autor:
Parangama Sarkar
We relate the set of complete reduction vectors of a $\mathbb{Z}^s$-graded admissible filtration of ideals $\mathcal{F}$ with the set of multigraded regularities of $G(\mathcal{F}).$ We prove reg$(G(\mathcal{F}))$=reg$(\mathcal{R}(\mathcal{F})).$ We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff2aa6fcc08e1265cccd657a91e3b043
http://arxiv.org/abs/1606.05891
http://arxiv.org/abs/1606.05891
Autor:
Jugal Verma, Parangama Sarkar
Publikováno v:
J. Commut. Algebra 9, no. 4 (2017), 563-597
We study relationship between postulation and reduction vectors of admissible multigraded filtrations $\mathcal F= \{\mathcal F (\underline n)\}_{\underline n\in\mathbb Z^s}$ of ideals in Cohen-Macaulay local rings of dimension at most two. This is e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6f759373c39f81da1e61853d3975a7ac
Publikováno v:
Algebra and its Applications ISBN: 9789811016509
In this expository paper, we present proofs of Grothendieck–Serre formula for multi-graded algebras and Rees algebras for admissible multi-graded filtrations. As applications, we derive formulas of Sally for postulation number of admissible filtrat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a904b292390ad79daff8631bd40e8b09
https://doi.org/10.1007/978-981-10-1651-6_8
https://doi.org/10.1007/978-981-10-1651-6_8